
The Middleware Support for Consistency in Distributed

Mobile Applications
*

Anna Kozlova, Dmitry Kochnev, Boris Novikov

University of Saint-Petersburg
Universitsky pr., 28, Peterhof, Saint-Petersburg, Russia

anet@ntc-it; dmitry@smartphonelabs.com; borisnov@acm.org

Abstract. This paper presents a model of the distributed middleware with
transactional support. Our approach provides for high availability of the
system in the fluctuated mobile environment and a high degree of a
consistency when network connections are stable. The proposed set of the
high-level operations allows high level of concurrency while processing
XML-like data structures. A concept of the "accumulator" is introduced,
providing for efficient conflict resolution during reconciliation.

Keywords: nomadic system, mobile transactions, high-level operations,
accumulators.

1. Introduction

Business goes mobile. Cellular mobile networks allow for high-speed data

transfer. Cellular networks coverage becomes more and more comprehensive. The
number of high performance mobile devices which support complex applications is

increasing from year to year. One of the most promising directions of the mobile IT-

industry [1] is the development of applications with the vertical architecture known

as business-to-employee (B2E) applications. Such applications provide solutions for

interaction problems between the company and its employees, for example,

enterprise resource planning (ERP), customer relationship management (CRM) or
sales force automation (SFA).

The mobile environment imposes a number of restrictions on the applications:,

such as limited sizes of memory and storehouse of the data, small computation

power and small power resources, etc. [2].

The performance and communication characteristics of a cellular network may

fluctuate depending on a place, time of day, weather, activity of subscribers and
many other factors. A stable cellular network possesses good communication

characteristics (i.e. "big enough" data amounts can be transferred "quickly enough"

between the client and the server) and the intermittent connection (i.e. network

connection can not be kept alive for a long time).

* This research was partially supported by RFBR grant. No. 04-01-00173

1.1. Problem statement

The basic problem which should be solved when creating a B2E-system is to

adapt a well-known design of wired solution, which uses wired business processes
for the mobile environment. The usual, albeit not the best, approach frequently used

in the industrial applications, is as follows: the conflicts which arise after

disconnection in such applications, are resolved by using one of the predetermined

rules, for example, that the user should choose a solution for each conflict manually.

In this article we propose a solution, which involves both application-transparent

and application-aware adaptation approaches [3].
The system, which is considered in the scope of this paper, has a nomadic

architecture [4], and the clients do not communicate directly among themselves. The

primary server is a high performance computer, which manages numerous

connections and large amounts of data. The client manages a local replica of data

and allows disconnected operation. Technological restrictions and features related to

implementation of client application for such system are described in detail in [2].
The purpose of this paper is to design the prototype of middleware for the mobile

distributed system with the support of transactions, which provides high level of

availability of system in the unstable (fluctuated) mobile environment and high

degree of a consistency of the data in the environment of a stable mobile network.

2. Related Works

Distributed systems include traditional distributed systems, nomadic distributed
systems, and ad-hoc mobile distributed systems. The current document is focused

on the concept of the middleware for nomadic systems. The detailed middleware

review is resulted in [4].

2.1. Middleware

Most of existing middleware technologies, such as object-oriented middleware

[5], message- and transaction-oriented systems, hide from the application the

heterogeneity and the distributed nature of its environment. This approach, although

very efficient and cost-effective in "wired" environment, is not well-suited for the

systems that work in wireless environment [6].The basic problems arising at moving

of the system to a mobile environment are synchronization of the data (i.e.
restoration of data consistency) and maintenance of availability (inapplicability of

data locking) [7].

One of the major issues targeted by data-sharing middleware systems such as

Bayou [8], Coda [9], its successor Odyssey [10] and Xmiddle [11], is the support for

disconnected operation and data-sharing.
The proposed solution inherited some features from Bayou [8], but the proposed

solution supports the correct histories on the clients and on the server and allows

processing the reconciliation and further replaying of histories instead of applying

replica merging.

As Odyssey [10] the proposed solution introduces context-awareness and

application-dependent behaviors. It focuses on efficiency of data granularity and

improves Odyssey’s architectural solution on application-aware approach by

offering server-based accumulator abstraction.

Xmiddle [11] allows mobile hosts to share data when they are connected, or
replicate the tree-like data and perform operations on them off-line, when they are

disconnected. Reconciliation policies are specified as part of the XML Schema

definition of the data structures that are handled by Xmiddle itself. The weakness of

such system is that the policies of reconciliation are statically defined and strongly

related to the data structures used by the application. We improve this approach in

such a way that the application may contain additional server-side units
implementing conflict resolution policies as accumulators.

Tuple space based systems for logical and physical mobility such as JavaSpaces

[12], Lime [13], Limbo [14], and IBM T Spaces exploit the decoupling in time and

space of these data structures in the mobility context. Tuple-spaces are multi-sets,

which means that every tuple can be duplicated in the space. Tuple spaces are very

general concept that looses data structures, so this approach cannot be applied to the
highlighted problem because it has irresolvable disadvantages with data

reconciliation.

2.2. Mobile Transactions

The classical concept of transaction is not applicable in a mobile environment
[6, 7]. There are some approaches, which take into account the specifics of mobility,

expanding classical definition. Most approaches use replication of the data on a

client part of the application, which raises data availability. Pessimistic approaches

[15] do not support replication and disconnected operation, and thus cannot be

applied to the highlighted problem.
The model described in this paper uses the optimistic approach. The close

approaches are presented in [16] and [17], where the commitment is processed on a

local replica, and then the lifecycle of the application proceeds in the assumption

that the commitment will be confirmed by the server. In [16] the results of the same

transaction processing on the client and server sides may differ; and the correctness

of the result defines by client application.
As well as the approaches using broadcasting [18, 19], our approach reduces

ascending traffic (from the client to the server). For this purpose read-only

transactions are being committed on the client side without any confirmation from

the server. The local serialization graph is used for recognition of transactions that in

any way cannot be serialized on the server. The similar ideas are represented in the

approach of [20] where the server computes so called dependency information and
broadcasts it to clients.

The detailed review focused on the computational model and ACID-properties of

approaches to mobile transactions are represented in [21].

2.3. Data Model & Operations

Instead of Document Object Model (DOM) by World Wide Web Consortium,

the offered data representation uses unique identifiers for each node due to
distributed and replicated nature of the data.

There are a lot of data models, which have been known for a long time, that use

the abstract high-level operations defined as sequences of atomic operations. The

concept of multi-level transaction [22] is most interesting for our purpose. In most

cases the specially defined high-level operations commutate with each other in spite

of the elementary operations laying in their basis. Use of the similar approaches
raises concurrency of transactional operation in the system.

The data considered in this paper may have a non-numerical nature and complex

internal structure, therefore some semantic conflicts arising between operations can

not be represented as pseudo-conflicts, and thus universal commutativity can not be

achieved as in pseudo-conflicts between Withdraw() and Deposit() operations

working with account [22]. The decided problem is to define the operations so that
the number of irresolvable conflicts would be as little as possible.

In [23] the ideas of the concurrent video model related to high-level operations

and unique identifiers applied to the linear data model. We admit that the further

development of these ideas will allow applying the similar approach to the XML-

structures.

3. Data Model

The data using by most B2E -applications (e.g. sales force automation) may be

represented as tree-like structures semantically associated to graphs, which are

stored in XML documents. Naturally, the organization consists of departments;

employees work in departments; each department develop some projects, related to a

client base; each projects relates to a group of employees; clients are related to the

projects, etc. Tree structure allows sophisticated manipulations due to the different
node levels, hierarchy among nodes, and the relationships among the different

elements, which could be defined.

The data used in the internal representation turn out from the normal XML by

applying the transformation, which moves the attributes into the affiliate nodes

(Figure 1). Thus, the target XML has the following properties:

• Non-leaf nodes contain the navigational information only.

• The data values are stored only in the leaf-nodes.

• The references are stored only in the leaf-nodes. Each reference-node points to

no more than one node. Also, the reference-nodes point to navigational nodes

only.

-ID

-CHILDREN_ID_SET []

-PARENT_ID

-REFERED_BY_ID_SET []

Navigation-Node

-ID

-DATA

-PARENT_ID

Data-Node

-ID

-PARENT_ID

-REFERS_TO_ID

Ref-Node

Figure 1. Node structure

Moreover, each node is assigned to the unique identifier due to distributed and

replicated data representation. This unique identifier is kept in all replicas.

A replica presents determined by a subscription a subtree of the tree of the

master replica (Figure 2.1, 2.2). If the subscription contains a pair of nodes, so that

one node is an ancestor of another, then nodes of intermediate generations also will
be included in a subscription.

By default, the data in leaves stores according to the concept of application-

transparent adaptation [3]. In addition to this, the system allows to organize access

to some data items according to the application-aware concept. For this purpose the

leaf of a tree should detail the "accumulator" abstraction offered by us in Section 5.

The client’s replica contains only the elements of a simple type (e.g. a number or a
string) instead of accumulators.

(1) (2)

Figure 2. Client’s replica as a part of server’s replica (1) and the replica on the client side (2)

4. Operations

In the model described in this paper the following operation above tree structures

are defined: insert_node, insert_data, and insert_ref, delete, update, select and
move. The operations defined in such way are commutating with each other in most

cases. The formal definitions are presented further.

Definition. The insert operation (Insert(parent_id, sibling_id): newID)

operation inserts a new node in the data tree as a child of the node with parent_id

identifier and as a next sibling of the node with sibling_id identifier. If sibling_id is
not set, the operation creates the first child of the node with parent_id identifier. If

any required node is not found or has inappropriate type, this operation reports

failure.

Definition. The insert operation for navigation nodes (InsertNode(parent_id,

sibling_id): newID) inserts a navigation node using Insert() operation.
Definition. The insert operation for data nodes (InsertData(parent_id,

sibling_id, data): newID) inserts a data node using Insert() operation according to

the following algorithm:

1. Execute Insert (parent_id, sibling_id)

2. Associate the created node to the data entry

Definition. The insert operation for reference nodes (InsertRef (parent_id,
sibling_id, toID): newID) inserts a reference node using Insert() operation according

to the following algorithm:

1. Execute Insert (parent_id, sibling_id)

2. Find a node with toID identifier. Report failure if search failed

3. Associate the created node to the node with identifier toID

4. Insert the identifier of created node into REFERED_BY_ID_SET

Definition. The update operation for data-nodes (Update(id, new_data)) sets

the data entry associated to the node with id identifier to new_data. If the required

node is not found operation reports failure.
Definition. The delete operation (Delete(id)) removes the full subtree with the

root node identified as id.

1. Find a node with identifier id. Set it as current node

2. Remove current node from the CHILDREN_ID_SET of its parent node

3. If this node is a reference (REFERS_TO_ID is not empty) then removes

current node from REFERED_BY_ID_SET of the node with
REFERS_TO_ID identifier

4. Apply Delete() recursively for each reference nodes listed in

REFERED_BY_ID_SET of the current node

5. Apply Delete() recursively for each node listed in CHILDREN_ID_SET of

the current node

6. Remove the current node
Definition. The select operation (Select(id)) returns the node with identifier id as

an object or reports failure if the required node does not exist.

Definition. The move operation (Move(id, new_parent_id, new_sibling_id)) sets

the subtree with root node identified by as a child of the node with new_parent_id

identifier and as a next sibling of the node with new_sibling_id identifier. If
new_sibling_id is not set, the operation inserts the first child of the node with

new_parent_id identifier. The provisional algorithm follows:

1. Find nodes with identifiers id, new_parent_id, new_sibling_id. Report

failure if such nodes do not exist.

2. Assign a node with new_parent_id identifier as a parent to a node with

identifier id
3. Insert id value after new_sibling_id into the CHILDREN_ID_SET of the

node with new_parent_id identifier.

4. Remove identifier id from CHILDREN_ID_SET of the old parent of id

In
se

rt
N

o
d

e

In
se

rt
D

a
ta

In
se

rt
R

ef

U
p

d
a
te

D
el

et
e

S
el

ec
t

M
o
v
e

InsertNode T T T A T* T T

InsertData T T T T T* T T

InsertRef T T T A T* (1) T

Update A T A T T* T A

Delete T* T* T* T* A (2) T*

Select T T (1) T (2) A T*

Move T T T A T* T* A

Table 1. Commutativity table.

The Legend.

• Additional assumptions for the pairs of operations marked as T* are as follows:

Op1(X) ○ Op2(args) == Op2(args) ○ Op1(X) only if X∉ Parent(args)

where Parent(args) is a conjunction of parent sets of all elements of args, and Op1 is Select() or

Delete().

• Additional conditions dependent on the parameter values of the operations (and independent on

database state) are required in the cases marked as (1) and (2)

4.1. Commutativity Table

The above table describes the commutativity aspects of proposed operations. The

pairs of operations that always commutate marked in the table as A (ALWAYS). If

the disjunction of the argument sets of both operations is empty, the pairs of

operations marked in the table as T (TRUE) will commutate. Naturally, the
commutativity between some operation and insert*() requires a weaker assumption:

the NewID generated by insert*() should not equal to any argument of the second

operation.

Thus, the proposed high-level operations in most cases commutate with each

other in spite of the elementary read and write operations laying in their basis. For
example, operations Move() and InsertNode() may be represented as a composition

of elementary read-write operations as follows:

Move(id, new_parent_id,

new_sibling_id) ≅

≅ Read(id) ◦

◦ Read(new_parent_id) ◦

◦ Read(new_sibling_id) ◦

◦ Write(id � getParentID()) ◦

◦ Write(new_parent_id) ◦

◦ Write(id);

InsertNode(parent_id, sibling_id):

newID ≅

≅ Read(parent_id) ◦

◦ Read(sibling_id) ◦

◦ Write(parent_id) ◦

◦ Write(newID);

If id==parent_id there is a conflict between elementary operations, instead of it, the
proposed high-level operations commutate with each other.

5. Accumulators

Accumulators are intended for "intervention" of the application to the conflict

resolution. As against simple types, the accumulator stores operations applied to

some initial value of simple type instead of the explicit value of the element. Thus,

accumulators allow on the air replaying the operations. It decreases number of

conflicts between update operations, i.e. reduces number of transaction aborts in the
system.

Definition. The base value is value of simple type. To compute the value of the

accumulator on any moment of time one shall apply the operations stored in

accumulator to that base value.

Definition. The accumulator stores operations in the operations collection. Each

operation in the accumulator has two timestamps. The insertion timestamp (ITS)

defines the moment when this operation has been added into the accumulator; and

the other one is the execution timestamp (ETS) that equals to the client replica

timestamp (CRTS) that denotes a timestamp of last connection to the server with

participation of the given client, because from server’s point of view the client has

no clock. The operations are defined and implemented at the application layer.
Definition. The external functions are intended to get additional information

about the accumulator. External functions may depend not only on the operations

and the base value of the accumulator, but also on other parameters, for example,

another accumulator. An external function semantically depends on the period of

time, if it depends on operations that have been applied during this period. The

external functions are defined at the application layer.

Example. “The daily average balance on the account” may be an external

function for the account represented as accumulator. The value of this function can

be used for operation Op defined as “monthly interest of the account”. The

accumulator allows inserting into the history transactions that could not be inserted
according to application-transparent approach. If after applying of the operation Op

the server receives the operation Op1 that influence to the result of applying Op,

such operation will be just added into the accumulator. As a result, the current value

provided by the accumulator, will allow for Op1 applying, because this value is

calculated "on the air".

5.1. Accumulator Design Details

Two typical designs of the collection are introduced: list- and set-accumulators.

The application developer may also implement his own designs of the collection.

The main difference between list- and set-accumulator collections is that in a list all
elements are strictly ordered and in the set all elements are stored without any order.

Uniqueness of elements in set is not important in this context, because each

operation received by the server has unique identifier. This identifier consists of

unique identifier of the client that causes this operation and unique identifier of this

operation on that client.

For each type of collection one of the proposed strategies of modification may be
applied: the first strategy is so called insert-only strategy; the second one is insert-

and-remove strategy. The methods of replaying the operations for both strategies are

defined further. The application developer may choose between those methods

according to time-dependence of external functions and conflict presence between

defined operations.

5.2. Set-Accumulator

The time concept cannot be applied to sets, because it would define the artificial

order. Also, the values of the external functions do not depend on the order of

elements; it means that each operation in the set should commutate with each other.

Inserting or removing the new operations in such accumulator occurs as inserting
or removing the element in the set. Replaying of some operation in set can be

implemented by two methods: as replacement of old operation with the new one, or

as inserting a compensational operation and then inserting of the new operation.

Because of commutativity of operations, the results of each method are the same.

The only difference is that in the first case the removed operation will not appear

anymore in the accumulator; in the second case inserting the compensational
operation requires its explicit existence.

5.3. List-Accumulator

Because of strictly defined order, each operation stored in the list-accumulator

has a context of other operations. (By the way, the list-accumulator may be applied
as a set, because each operation has its unique identifier, and the context may be

ignored in the application.) There are two kinds of list-accumulators: insert-only and

insert-and-remove list-accumulators. Inserting or removing the new operations in

such accumulator occurs as inserting or removing the element in the set. The

replaying strategies for the list-accumulator follow.

Definition. An insert-only list-accumulator supports only one way for
replaying: insertion of a compensational operation and insertion of the new

operation. There are following cases related to time-dependency of the external

functions and the commutativity of the defined operations:

• Case 1. There are some time-dependent external functions in the accumulator

� If all operations in the accumulator commutate with each other,

inserting of the compensational and new operations occurs according to

the rules of detection of the ETS.

� Else, if some operations in accumulator do not commutate with each
other, inserting of the compensational and new operations occurs

according to the rules of detection of the ETS. Because the operations do

not commutate, the application should warrant the semantic correctness

of the replaying.

• Case 2. All external functions are time-independent

� If some operations in accumulator do not commutate with each other,
inserting of the new element in any place of the list does not damage the

rules of detection of the ETS because all external functions are time

independent. Thus, there are several cases to replay the operations:

o Insertion of the compensational operation and the new operation just

after the old operation
o Insertion of the compensational operation just after the old operation

and inserting the new operation according to its ETS

o Insertion of the compensational and the new operations according to

their ETS
The compensational operation and the method of replaying are defined by the

application.

Definition. An insert-and-remove list-accumulator support two approaches for
replaying: inserting of the compensational operation (the same way as insert-only

case, considered above) and removing of the old operation. If some external function

depends on time some information related to the old operation may be lost, so this

method damages the semantic correctness of such function.

• Case 1. All external functions are time-independent

� If some operations in accumulator do not commutate with each other,
inserting of the new element in any place of the list does not damage the

rules of detection of the ETS because all external functions are time

independent. Thus, there are several cases to replay the operations:

o Removal of the old operation and inserting of the new one with old

ETS

o Removal of the old operation and inserting of the new one with the
new (actual) ETS

The application defines the replaying method.

5.4. Purging of Out-of-Date Operations

While the system works the number of the operations in the accumulators grows.

To improve the performance of the system, it is necessary to purge out-of-date

operations and to replace the base value with the new one from time to time. The

new value is a result of applying the operations that will be purged to the old value,

but generally

F(b, (op1, op2, op3))≠F(op1(b), (op2, op3)) (*)

This issue may be solved using additional assumption about the external function:
it must depend on limited (explicit) period of time, i.e. depend on final number of

operations. This period of time refers to the dependent window of the external

function. Of course, this number may be great. Thus, the operation became out-of-

date if its ETS t satisfies to the following predicate:

} of windowdependent |max{
..1

iii

mi

current
Ftttt −−

=

<

5.5. Accumulators Advantages

The offered strategies allow the application to define the criteria of a correctness

using definition of the operations and external functions. Thus, the application is

permitted to influence resolutions of conflicts.

Purging of the accumulator from old operations also may be initiated by the

application, it allows the server to manage the instance of accumulator in the
efficiently manner.

6. Protocol for mobile transactions

The proposed protocol is based on low-level protocol that supply data transfer

between mobile hosts, for example, HTTP over GPRS or UMTS. The protocol must

satisfy to the following conceptual requirements:

1. The server must reconcile histories from all clients and keep the master replica
in consistent state.

2. The clients must propagate their changes to the server and receive from the

server the changes made by the other clients that modify the local replica of this

client.

3. To achieve the appropriate level of availability the client should operate in

disconnected mode.
4. During disconnected operation the client should manage two local replicas of

the data. The primary replica one should be identical to the master replica

stored on the server at the moment of the last connection to the server. All

changes during disconnected operation should be applied to the tentative

replica.
5. The local conflicts (the conflicts on the tentative replica) must be resolved by

the client without any participation from the server.

6. The client must commit read-only transactions.

7. To save its computational resources, the client should process the garbage
collection, i.e. to clean the memory from the unused structures for conflicts

resolving on tentative copy.

The typical scenario of interaction between hosts (Figure 3.1) gives a large scale
view of the system work. First, the client subscribes for the data and receives from

the server a replica marked with a special CRTS. When disconnection occurs, the

client continue working with its replica Further, at some moment depending on the

adaptation policy of the application, the client restores the connection and send its

changes to the server. The server reconciles the information received from the client

with the master replica and returns all changes that modify client’s replica. Then
client reconcile the received changes to its local replica. The large scale of the

protocol is shown on the Figure 3.2.

(1) (2)

Figure 3. System lifecycle (1) and the protocol (2)

6.1. Client Side Algorithm

1. Disconnected operation

• Permanent concurrent execution of the transactions on the tentative copy
and manage the local serialization graph

• If the server response that was requested in the previous execution of the

step #2 has been received, go to step #3

• After returning form the step #3 and #4 may continue with the step #2

2. Updates propagation

• Pause disconnected operations (Step #1)

• General local commitment processing, i.e. commitment of all local

transactions

• Purge all update transaction from the serialization graph

• Mark all read-only transactions

• Send the commit_request that includes all update transactions and the

CRTS to the server

• Continue with the Step #1

3. Compensation

• Receive the part global history that modifies the client’s replica and a list

of client’s transactions aborted by server

• Cascadely abort of all transactions that read from transactions that have

been aborted by the server

• Add the received transactions to the local serialization graph

• Cascadely abort of all transactions that conflicts with transactions that

have been committed globally
4. Reconciliation

• Replay the history received from the server on the primary copy

• Replace the tentative copy with the primary copy

• Pause disconnected operations (Step #1)

• Purge the serialization graph from all transactions with server timestamps

and from read only transactions marked on the Step #2

• Replay the transactions from the serialization graph on the tentative copy

• Continue the disconnected operations (Step #1)

6.2. Server Side Algorithm

1. Receive the transactions from the client in serial order with the CRTS.

2. Insert the received transactions into the global history using histories merging

procedure.
3. Send to the client all transactions that modify the local replica of that client and

have not been sent to him yet. Send the list of local transactions that have been

aborted by the server.

6.3. Histories merging procedure

The following algorithm is intended to the operation with non-accumulator

arguments. Otherwise the accumulators’ technique should be applied.

The operation op having timestamp t can be inserted into the history H if

)).,,(),,((,),,(iiiiiii txiopopoptxiopttHtxiop oo ≡∈∀ >

If it is true for each operation in the transaction then this transaction can be

serialized.

The policy the transaction aborting may be defined on the application side. For

example, it is possible to abort a transaction with the minimal timestamp. This

algorithm may be improved using the method [24], where for each data element the

timestamp of last read, write etc. are stored in the special structures.

6.4. Approach to Information Selection for Transferring to the Client

To determine which transactions should be sent to the client, the server uses the

CRTS. If the pre-image of the client's replica at the moment of the CRTS on the

server does not contain any elements of accumulator type, the CRTS uniquely

determines the data of this pre-image at the moment defined by the CRTS. Thus the

server should send to the client all operations from the global history, which has a

timestamp greater than the CRTS and that has the arguments from the pre-image of
the client’s replica at the moment of the CRTS.

The previous approach cannot be applied if the pre-image of the client's replica at

the moment of the CRTS on the server contains some elements of accumulator type.

For example, after the moment of the client A CRTS the client B inserts an operation

with the ETS less than the client A CRTS, and this operation does not commutate

with the subsequent operations. So, the value of the accumulator at the moment
defined by the client A CRTS was changed, but it cannot be propagated to the client

using the previous approach.

In the case of elements of accumulator type, the following approach is applied for

reconciliation client's replica with the server's data. The server sends to the client not

only the operations but also the values of the element having accumulator type at the

moment of the CRTS only if there is an operation stored in the accumulator that is
satisfying to the following predicate:

CRTS > ETS && CRTS < ITS

This value should be included into the client's primary copy. Use of this approach

warrants the appropriate level of consistency of the client and the server replicas.

To save the computational resources of the client host it is possible to transfer the
whole new client’s replica together with the operations. However, it brings an

additional load onto the network.

6.5. Correctness of the protocol

Lemma 1. Inserting the read-only transactions into a global history does not
influence its serializability:

21

22

11

 :

HHHHhistoryserialtheH

CofhistoryserialtheH

CofhistoryserialtheH

⊇∧⊇−∃

−∀

−∀

Proof.

1. Note that H1 and H2 differ only with the read-only transactions.

2. According to the proposed protocol the history

S1 := (Op(H1) \ {op∈Op(H1) | op∈ some read-only transaction of H1}, <H1)
is equivalent to

S2 := (Op(H2) \ {op∈Op(H2) | op∈ some read-only transaction of H2}, <H2)
(as it defined in [24]) and these histories are equivalent to some serial history

according to the server side algorithm.

3. Insert all read-only transactions of H1 and H2 to S1 (and denote it as S1') and to

S2 (and denote it as S2') according to its orders in H1

and H2

4. Since read operations do not conflict with each other, S1' and S2' are equivalent.

5. So, the global history S1' containing all transactions of all clients has been

found. Also, this history is equivalent to some serial history.

Lemma 2. The purging of the serialization graph on the client side is correct, i.e.

the transactions, which would begin after the purging, would not conflict with

transactions that have been removed from the graph.

Proof. On the client side the new transactions that began after the general local

commitment has been processed are succeeding the transaction that has been purged

from the local serializing after the commitment, so that any transaction will not go
through local commitment. Thus, the purged transactions do not influence the

processing of new transactions during disconnected operation.

Further, on the server side new transactions will receive the timestamp of the

moment of the global commitment of the transactions purged on the client side

before new transactions started. Thus, from the server point of view the new

transactions are also succeeding the transactions that were locally committed on the
client before.

Statement. Prove that the assumption of general local commitment of all

transactions on the client side is essential. It means that it is impossible to warrant

that purging of the serialization graph would not damage its integrity.

Consider the following example: the edge t1�t2 of the serialization graph was
assigned to of the conflict between transactions t1 and t2 cause by operations q1(x)

and p2(x). The transaction t2 has been committed and purged from the serialization

graph, but the transaction t1 continue the executing. Then t1 executes operation q'1(y)

which has to cause the conflict with the operation p'2(y) of transaction t2, but the

transaction t2 has been purged. Thus, the graph has to contain a cycle but it is an

acyclic naturally.
Theorem. The proposed protocol is correct.

Proof.

1. The correctness of the server side algorithm is demonstrated by the procedure of

merging histories at the server.

2. Lemma 1 and Lemma 2 prove the correctness of the client side algorithm.

7. Conclusion

The model of a middleware-system offered in this paper provides a model, which
supports a limited form of consistency in a distributed mobile environment, where

classical transaction models are not suitable. This approach is suitable for typical

nomadic network and may be applied to a wide class of enterprise applications

working in mobile environment.
Use of special set of high-level operations is one of the most important features of

the introduced solution. These operations work with the data having a tree structure

with XML-styled references. The key strength of the given model, in contrast with

other approaches, is that changes of the replica transfer as high-level operations and

not as simple data items. In most cases, two operations permute with each other. The

commutativity of those operations is based on their semantics that is defining by the

target application. Thus, it reduces number of transaction aborts and, therefore,,

availability and performance of the system increase in comparison with classical

transactional operation in mobile environment.

Apparently, within the framework of the offered model, two update operations
being the most often operation cannot be permuted. In general, a conflict like that

may be resolved only on the application layer according to its semantics. We

introduce abstraction of accumulator for effective implementation of the application-

aware approach in the application layer.

According to this approach, the proposed model allows application to define the

policy of adaptation for each node of the data tree. Unlike simple types, an
accumulator does not store an explicit value, but it contains only the base value of a

simple type and the collection of operations to be applied to the base value. The

operations are determined on application layer as well as the external functions that

return additional information about the node of accumulator type. In our prototype

system there are two different implementations of accumulator concept called list

and set. According to its semantics, the application may choose the suitable
implementation for each node of accumulator type.

The distinctive feature of our system is the ability of client to resolve local

conflicts without communication with server. To achieve the integrity of the client's

replica, its representation includes external nodes with two-way navigation. These

nodes help to recognize hierarchical relationship and allow the client to resolve local
conflicts. Resolving of local conflicts improves the performance of client part of

application and decreases communication cost.

The protocol we use has a significant limit: it requires general local commitment

of all transactions before sending of any data to server. So, short local transactions

should wait completion of long ones. That issue reduces efficiency of a client.

Our future research is focused on the issues related to replica and cache
management, system scalability and system performance analysis. Also we plan to

develop the strict theory of accumulators.

Acknowledgements

We thank Katja Perminova from SmartPhoneLabs, LLC for the comments which

helped improve this article.

References

[1] D. Kochnev Features of mobile applications development, Mobile

Communications/Russian Edition, No. 10, 2002 (in Russian).

[2] D.S. Kochnev, A.A. Terekhov Surviving Java for Mobile, IEEE Pervasive Computing,

Vol. 2, No. 2, Apr-Jun 2003. P. 90-95

[3] M. Satyanarayanan, Fundamental Challenges in Mobile Computing, 15th ACM

Symposium on Principles of Distributed Computing’96, Philadelphia, PA, USA, pp. 1-7,

May 1996

[4] Cecilia Mascolo, Licia Capra and Wolfgang Emmerich. Mobile Computing Middleware,

http://citeseer.nj.nec.com/596660.html

[5] W. Emmerich Engineering Distribued Systems, John Wiley & Sons, 2000

[6] L. Capra, W. Emmerich, and C. Mascolo. Middleware for Mobile Computing: Awareness

vs. Transparency (position paper). In Int. 8th Workshop on Hot Topics in Operating

Systems, May 2001.

[7] T. Imielinski and B. R.Badrinath, Mobile wireless computing: Challenges in data

management, Communications of the ACM,Vol. 37, No. 10, October 1994, pp. 19--28.

[8] A. Demers, K. Petersen, M. Spreitzer, D. Terry, M.M. Theimer, and B. Welch. The bayou

architecture: Support for data sharing among mobile users. In Proceedings Workshop on

Mobile Computing Systems and Applications. IEEE, December 1994.

[9] Satyanarayanan, M, Kistler, J. J., Kumar, et. al., Coda: a Highly available File System for

a Distributed Workstation Environment, IEEE Trans. on Computers, 39(4): 447-459, 1990.

[10] M. Satyanarayanan, Mobile information access, IEEE Personal Communications, vol.3,

no.1, pp. 2633, 1996.

[11] C. Mascolo, L. Capra, S. Zachariadis, and W. Emmerich. XMIDDLE: A Data-Sharing

Middleware for Mobile Computing. Int. Journal on Personal and Wireless

Communications, April 2002.

[12] E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces, Principles, Patterns, and Practice.

Addison Wesley, 1999.

[13] Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Roman. Lime: A Middleware for

Physical and Logical Mobility. In Proceedings of the 21 st International Conference on

Distributed Computing Systems (ICDCS-21), May 2001.

[14] N. Davies, S. P. Wade, A. Friday and G. S. Blair, Limbo: A Tuple Space Based Platform

for Adaptive Mobile Application, Proceedings of the International Conference on Open

Distributed Processing/Distributed Platforms (ICODP/ICDP '97), Toronto, Canada, 27-30

May 1997, pp291-302.

[15] S. Madria and B. Bhargava. A Transaction Model for Improving Data Availability in

Mobile Computing, in Distributed and Parallel Databases, 10(2), 2001.

[16] J. N. Gray, P. Helland, P. O’Neil and D. Shasha. The Dangers of Replication and a

Solution. In Conference on Management of Data, pp. 173-182, Canada, June 1996.

[17] E. Pitoura and B. Bhargava. Data Consistency in Intermittently Connected Distributed

Systems. In Transactions on Knowledge and Data Engineeging, Nov. 1999.

[18] E. Pitoura and P. Chrysanthis, Scalable Processing of Read-Only Transactions in

Broadcast Push, IEEE International Conference on Distributed Computing Systems,

Austin, 1999

[19] J. Shanmugasundaram, et. al. Efficient Concurrency Control for Broadcast Environments

Univ. of Massachusetts Technical Report 1999.

[20] Il Young Chung, Bharat Bhargava, Malika Mahoui, Leszek Lilien Autonomous

Transaction Processing Using Data Dependency in Mobile Environments, In: Proc. of The

Ninth IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS'03)

p. 138, San Juan, Puerto Rico, 2003.

[21] P. Serrano-Alvarado, C. L. Roncancio et M. Adiba “Mobile Transaction Supports for

DBMS” In: Proc. of 17ièmes Journées Bases de Données Avancées (BDA'2001) , Agadir,

Maroc, 2001.

[22] G. Weikum, H.-J. Schek, Concepts and Applications of Multilevel Transactions and

Open Nested Transactions, In Database Transaction Models for Advanced Applications,

ed. A.K. Elmagarmid, Morgan Kaufmann, 1992.

[23] B. Novikov and O. Proskurnin. Towards collaborative video authoring. Proc. of the

ADBIS'2003, 370-384, Dresden, Germany, 2003.

[24] P. Bernstein, V. Hadzilocs and N. Goodman, Concurrency Control and Recovery in

Database Systems, Addison-Wesley, Reading, Mass., 1987.

