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Abstract. Today, non-linear video editing technology became ubiquitous,
having spread from the film industry to almost every home computer. Dozens
of multimedia authoring applications offer a wide range of functional
capabilities, yet there is an evident lack of support for collaborative activities
among them. To change this situation, a novel data model called concurrent
video has been recently proposed. Since it was substantially based on formal
aspects of cooperative transactions, it has provided a solid foundation for
consistent exchange and sharing of information between co-workers in
collaborative environments. The main objective of this work is to extend the
concurrent video model by introducing advanced editing operations, which
should permit more flexibility within the authoring process and enable a
higher level of concurrency among users’ actions. Besides, this extension is
going to be performed in such a way that major transactional properties of the
original proposal will be preserved.
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1. Introduction

It is a well known fact that the possibility to collaborate in multimedia authoring
environments is going to bring considerable advantages into the process of content
creation. With reasons ranging from tight project deadlines to distribution of tasks
among editors, support for joint activities could noticeably improve video post
production technology in all related industries [15].

Recently, a technique for collaborative authoring of media streams, such as video
or audio, has been presented in the form of a concurrent video data model [11].
Based on the cooperative activity framework CoAct [13, 18, 9], this model has
enabled consistent sharing of information in the face of concurrent modifications,
which is often regarded as the key task of multi-user applications design.

The background is that co-authors’ actions in the CoAct framework are
represented via activity histories, which are basically sequences of editing
operations constituting individual working processes. As a result, consistency of
information exchange is achieved by means of the history merging mechanism [18]
that takes into account compatibility relations of participants’ actions in order to
detect conflicts in their joint efforts.

" This work is partially supported by the Russian Foundation for Basic Research
under grant No. 04-01-00173



To avoid unnecessary conflicts, editing operations offered within the concurrent
video model were especially designed to have good commutativity properties. In
fact, according to the concepts of timeline-based video authoring [4], these
operations allowed participants to work concurrently on different clips, which in the
end formed the desired video material.

The goal of this paper is to improve the original data model by providing support
for non-conflicting cooperative activities within the same clips. However, most
transactional aspects of the previous proposal are going to be kept intact.

The rest of this paper is organized as follows. After giving a brief overview of the
related work, the improved version of the data model is introduced. Next,
transactional properties of concurrent video are discussed and finally conclusions
and further work are presented.

2. Related Work

This section first gives a brief review of the CoAct framework and then presents a
summary of previous work on video modeling and collaborative multimedia
authoring.

2.1. The Cooperative Activity Model

The cooperative activity framework CoAct [13] defines a generic transactional
model that enables consistent sharing and exchange of information in various
collaborative scenarios, like multi-user document authoring environments [14].

To support joint activities, the CoAct framework assigns a personal isolated
workspace containing copies of shared data to each user involved in the cooperative
effort. Also, a separate common workspace is established to represent the current
state of team work. Thus, participants are able to manipulate their private versions of
shared objects independently from each other, while the common database stores at
first initial data, then intermediate and lastly final results of the joint effort.

At the user level, cooperation is achieved by explicit exchange of the contents of
workspaces, which can be performed either directly or through the common
database by means of dedicated operations. But conceptually, these processes are
controlled by the history merging mechanism [18, 9], that takes into consideration
semantics of the application domain, ensuring correctness of information exchange.

The point is that participant’s actions in CoAct are modeled by an activity
history, which is basically a sequence of operations carried out by a certain user in
his workspace. Similar to conventional concurrency control [20], a semantic conflict
test is defined for each possible pair of operation invocations. Such compatibility
predicate is often symmetric and is typically specified in terms of state-independent
commutativity relations. Since the order in which commuting operations are
executed is irrelevant, the compatibility property is used in CoAct as a basis for
merging activity histories. In other words, two operation invocations coming from
different users are both allowed to be present in the merge only if they are
compatible. Otherwise, the controlling user has to resolve the conflict by discarding
unnecessary actions.



Consequently, the merging mechanism of the CoAct model enables semantically
consistent incorporation of individual activity histories into a single one that is
implicitly formed in the common database and represents the results of cooperative
work.

2.2. Collaborative Video Authoring

Although a variety of multimedia authoring tools are available in the market, e.g.
[2, 16], none of them supports concurrent video editing and the related research
proposals are also very few.

Some of these works investigate cooperative activities based on locking
mechanisms [3, 17], while other approaches consider collaboration in real-time
groupware systems only [22]. In contrast to the concurrent video model [11], these
proposals do not cover multimedia modeling issues and do not provide consistency
guarantees in a transactional sense.

However, there exists a wealth of research works examining various aspects of
video data management and some of them have common features with the presented
investigations.

In particular, operations on media segments defined in video and stream algebra
[21, 10], as well as updating mechanisms in other proposals [1, 6] partially resemble
editing facilities of the model described below. Moreover, previously introduced
hierarchical data structures [1, 21] and video objects [12] also have certain
correlations with the presented approach.

Nevertheless, the major distinction between concurrent video and former models
lies in the suitability of the new proposal for the basic needs of both video authoring
systems and cooperative environments, which has not been achieved ever before.

The point is that in the considered authoring systems the movie is created by
altering and assembling source clips which are treated as independent units of raw
material. These clips along with other media objects are placed on the timeline,
which naturally represents the time flow. After the inclusion, objects can be edited,
special effects and transitions can be applied and the resulting material can be
arranged into a final video production. In addition, since such editing implies just
referencing the original files, which are not actually modified, a special process
called rendering is required to preview or export the produced movie.

Concurrent video takes into account these basic concepts of timeline-based
authoring and provides an efficient tree-based abstraction for referencing a sequence
of media clips. It also presents a set of high-level non-destructive editing operations
allowing users to insert and delete, alter and temporally combine video material to
form the final production.

To support joint activities, operations on different clips are considered to be
commutative, i.e. different users can work concurrently on different clips without
any conflicts. Moreover, hierarchical structure that references video data also stores
activity histories, providing elegant support for cooperation mechanisms of CoAct.

The above features clearly distinguish concurrent video model [11] from other re-
search proposals in the area of cooperative authoring. In particular, this investigation
significantly differs from recent works [8] and [5], which present tree-based data
structures for synchronous collaborative document editing.



3. Enhanced Concurrent Video Model

This section outlines improved concurrent video model that provides advanced
intra-clip editing operations and is entirely based on its already presented
counterpart [11].

3.1. Video Segments

In the considered model video segments represent an abstraction over
independent units of video data, which are used as building blocks within the
authoring process.

Basically, each video segment references a contiguous part of raw material via a
frame sequence and has its own set of attribute-value pairs which describe the
proper interpretation of the underlying media at the presentation or rendering level.
Frame sequences reflect the stream-like nature of video data, while attributes
support implementation of non-destructive editing operations as well as
specifications of desired transitions and special effects for the segment.

Actually, both the definition and the purpose of video segments in this work stay
the same as in the original proposal [11], however, we quote some facts here for
convenience:

Definition 1 (frame sequence) A frame sequence is a finite non-empty sequence
(f1 »--., fv) of video frames f;, referring to a contiguous block of video data. N is
called the length of a video sequence F and is denoted by Length(F).

Definition 2 (video segment) A video segment is a pair (F, 4), where F is a
frame sequence and 4 is a possibly empty set of attribute-value pairs {a;:v;}, storing
various additional information about the containing segment.

Besides, two trivial operations — concatenation and extraction — can be defined
for frame sequences [11], however they won’t be referred in this work explicitly and
thus are omitted.

3.2. Video Activity Tree

Concurrent video employs a single hierarchical data structure, called video
activity tree, for modeling both underlying media and cooperative transactions.

Basically, the structure of an activity tree in this work remains the same as before:
leaf nodes, called valid, are associated with video clips that authors place on a
timeline, dead nodes stand for previously deleted clips and the rest nodes hold
related parts of the activity history. Also, activity history elements are marked
whether they are private or shared to indicate what part of the tree is present in the
common database and what part exists only in the considered local workspace, as
illustrated in figure 1.

However, unique identifiers assigned to video clips, which have enabled the
development of editing operations with state-independent commutativity relations in
[11], are not sufficient for the purposes of this work. In order to provide intra-clip
operations with similar commutativity properties, unique values should be assigned
to all frames constituting the video stream. Fortunately, such task can be performed



by combining clips’ identifiers with frames’ indices within these clips. This
approach is actively exploited by novel editing operations and is reflected below in
the redefinitions of activity tree’s node structures.
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Figure 1. A sample video activity tree in a user’s workspace. Characters v, d, i and  denote valid, dead,
intermediate nodes and the root node of the tree respectively.

Definition 3 (video activity tree) A video activity tree T is a tuple (Root, Nodes,
Valid, Dead), where Root is the root node of T, Nodes is a set of intermediate nodes
of T, and Valid and Dead are disjoint sets of so-called valid and dead leaf nodes
respectively.

Additionally, there exists a total order <, defined over the set of leaf nodes of 7,
that corresponds to the order in which associated video clips are (or were for dead
nodes) located on the timeline.

Definition 4 (valid node) A valid node V of a video activity tree is a tuple (NID,
Range, Segment, History), where NID-Range pair uniquely identifies /s associated
video data, Segment is the video segment representing this data and History is an
ordered set of operation instances related to the given node V. Range is represented
as a pair of bounding values [Low, High].

Definition 5 (intermediate node and dead node) An intermediate node as well
as a dead node of a video activity tree is merely a tuple (NID, Range, History),
whose elements are intended for the same purposes as their counterparts in valid
nodes (except NID-Range pair identifies no data).

Operation instances, mentioned above, can be treated as records describing the
fact of execution of a certain editing operation by some user. They act as elementary
entities for building activity histories and modeling the authoring process, being the
same as in the original work [11]:

Definition 6 (operation instance) An operation instance is a tuple (Status, OID,
Name, Input, Output), where Status € {private, shared} indicates whether this
instance is present only in the current workspace or not, OID is a unique identifier of
this instance (required for tracing identical instances during the merging process)
and Name is the name of the executed operation, whose input and output parameters
are reflected in Input and Output sets.



3.3. Editing Operations

The main challenge in the design of editing operations is to provide a solid
support for modeling authors’ actions in a collaborative environment. Thus, it is
worth to remember that the most common thing cooperating authors are likely to do
is altering and assembling video clips on a timeline, and what is more, they are
likely to do it concurrently.

In contrast with the original proposal [11], which has provided only segment-
level editing operations, in this work most attention is focused on frame-level
manipulations and achieving commutativity of semantically non-conflicting actions
performed within the same video segment, e.g. altering of different frames of the
same clip by different users.

First of all, an initialization routine intended for fixing an initial state of the
cooperative activity in the common database is provided.

Definition 7 (initialization algorithm) The initialization algorithm takes a
sequence of N video clips, denoted by a collection of N video segments (vsy, ..., vsy)
as input and forms a corresponding video activity tree with an empty history:

1. Create N valid nodes V;: V i, 1 <i < N: V; = (NewID(), [1, Length(vs;.F)], vs;, &),
where NewlD() is a function generating a new unique identifier,
see [11] for how it may work.
2. Construct a video activity tree T: T := (Root, &, {V;| 1 <i < N}, &), such that:
V Vi Parent(V;) = Root AV i,j: 1 Si<jSNS V<, V.
Next, an operation for editing video clips as a whole or for modifying their parts
is presented:

Definition 8 (editing algorithm) The editing algorithm takes as input an
identifier id of the clip and a range » of frames within it, which have to be replaced
with a new video segment vs representing the results of performed modifications.
The algorithm splits the affected node of the video activity tree 7 (if necessary) and
accordingly updates its activity history:

1. Find a node V € T.Valid: V.NID = id A r — V.Range,
Report failure if such node does not exist.
2. If r=V.Range, Then modify V:
V:=(V.NID, [1, Length(vs.F)], vs, {O € V.History | O.Status = Shared?}),
Append an instance (private, NewID(), Edit, {id, r, vs}, &) to V.History,
Report success.
Else construct an intermediate node V’:= (V.NID, V.Range, V.History),
And go to step 3.
3. Construct valid nodes V; (at least two of them with non-empty frame sequences):
V;=(V.NID, [V.Range.Low, r.Low - 1], LeftSegment, &),
V, = (NewlD(), [1, Length(vs.F)], vs, D),
V3= (V.NID, [r.High + 1, V.Range.High], RightSegment, ),

where the contents of video segments LefiSegment and RightSegment is

illustrated in figure 2.

4. Adjust T: T := (Root, T.Nodes U {V"}, T.Valid U {V;} \ {V}, T.Dead), such that:

Parent(V’) = Parent(V) AN Vi Parent(V)) = V' ANV i, ji<j < V<V,

5. Append instance (private, NewID(), Edit, {id, r, vs}, &) to V,.History.



Evidently, the above algorithm provides an efficient means of modeling frame
level manipulations within a particular video clip and at the same time supports
operations applied to the whole segment, as already proposed in [11]. Since intra-
segment editing is based on the node splitting technique, the affected valid node is
replaced with a subtree, whose leaves are arranged to correspond to the resulting
video material, as illustrated in figure 2. Moreover, propagation of the original node
identifier to the node’s respective sub-segments formed after splitting enables
concurrent intra-segment manipulations in non-overlapping clip regions.

(a) (b) (c)

Figure 2. Node splitting carried out during intra-clip editing: (a) — an original valid node with the
associated clip, (b) — split node after editing inside of the clip, (c) — split node after right-edge editing.

At this point it is worth to mention that editing algorithms make no modifications
in the source video material — only references to the raw data are actually
manipulated. Implicitly, such approach assumes the possibility of random access to
the frames contained in the underlying video clips. However, this may be unfeasible
(at least directly) when clips are coded with compression algorithms exploiting
motion estimation, i.e. dependencies between adjacent frames. To overcome this
difficulty it can be assumed that video material is accessed from an appropriate
starting point, such as the nearest previous key frame, if necessary.

Next, operations for including new material into the video production and
removing unnecessary parts from it are described. The insertion algorithm is left
almost unchanged [11], while the deletion method now supports intra-clip removals.

Definition 9 (insertion algorithm) This algorithm takes as input a new video
segment vs and its desired location on the timeline, specified by a destination point
pos within a clip having given identifier id. The affected node is split and the
activity history is accordingly updated:

1. Find anode V € T.Valid:
V.NID = id A (pos € V.Range v (pos =0 A V.Range.Low = 1)),
Report failure if such node does not exist.
2. Construct valid nodes V; (at least two of them with non-empty frame sequences):
V; = (V.NID, [V.Range.Low, pos], LeftSegment, &),
V,= (NewID(), [1, Length(vs.F)], vs, &),
V3= (V.NID, [pos + 1, V.Range.High], RightSegment, &),
and split the node /' in a way similar to splitting in the editing algorithm.
3. Append instance (private, NewID(), Insert, {vs, id, pos}, D) to V,.History.



Note, that in contrast to [11], insertion operation instance is stored in the newly
created node and not in the split one. Along with propagating of the original
segment identifier to its remainders, this enables commutativity of insertions
occurred at different positions in the same clip.

Definition 10 (deletion algorithm) This algorithm takes as input an identifier id
of the clip and a range r of frames within it, which need to be removed. The
algorithm splits the affected node (if necessary), forms a new dead node and
accordingly updates its activity history:

1. Find a node V € T.Valid: V.NID = id A r C V.Range,
Report failure if such node does not exist;
Coordinate with previous deletions and undo local insertions, like in [11].
2. Construct valid nodes V; (at least two of them with non-empty frame sequences):
V;=(V.NID, [V.Range.Low, r.Low - 1], LeftSegment, &),
V,=(V.NID, r, @), this should be actually a dead node,
V3= (V.NID, [r.High + 1, V.Range.High], RightSegment, ),
and split V in case its part is removed, otherwise V" becomes a dead node itself.
3. Append an instance (private, NewlD(), Delete, {id, r}, D) to V,.History.

Similar to [11], the deletion algorithm can be designed to support commutativity
between any two removals, even overlapping within the same clip. Also, it can act
as an inverse for some local insertions, which are not shared by other users and are
not affected by subsequent operations. The latter can be seen as an example of
history reduction at the user’s side.

In addition to the presented editing operations it turns out to be useful to provide
a dedicated moving algorithm, which would enable moving of selected contiguous
blocks of the media stream to the specified locations. Though at first sight it may
seem that such method is unnecessary because it looks the same as an appropriate
sequence of deletion and insertion, in fact it is required since delete-insert pairs are
in conflict with concurrent editing of the moved block. Moreover, moving and
editing activities over a single segment can be regarded as compatible from a
semantic point of view and thus the following algorithm has to be provided.

Definition 11 (moving algorithm) This algorithm takes as input an identifier mid
of the clip and a range » of frames within it, which has to be moved. Their target
location is specified by pos and id parameters, which are similar to their counterparts
in the insertion algorithm. The algorithm is especially designed in a way to ensure
compatibility of moving operation with concurrent manipulations within the moved
segment, such as editing or insertion activities. To achieve this, it is insufficient to
move a single valid node like in [11], but it is necessary to move a proper valid (if it
exists) or the nearest intermediate node with a certain part of its subtree, which
stands for concurrent manipulations mentioned above (if any). Throughout this
process, the identifier of the moved clip should be kept intact, as outlined below:

1. Find a node M € T.Valid U T.Nodes: M.NID = mid A r — M.Range; or fail.

2. Apply steps 2, 3 of deletion algorithm to M, using » and Move operation instance.

3. Apply insertion algorithm with M.Segment (if M is valid node), r, id, and pos as
input, such that V, = (mid, r, M.Segment, &), and use Move operation instance.

4. Re-execute operation instances which were located in the nodes below M (if any);
This step is required only when M turns out to be an intermediate node.



4. Achieving Cooperation

According to the principles of the CoAct transaction model, two distinct types of
commutativity, namely forward and backward, are utilized for manipulating activity
histories [9, 19].

In particular, backward commutativity is intended for determining dependencies
between user’s actions within a single history. The point is that the behavior of
editing operations may be influenced by previously executed methods, for example,
any modifications of a particular video clip depend on the preceding insertion of this
clip into the media stream. Consequently, no operation instance can be exchanged
between any workspaces without its relevant predecessors. And backward
commutativity allows us to identify closed subhistories [9] having no external
dependencies and thus representing consistent units of work, which can be
exchanged between cooperating users separately from each other.

Actually, such dependencies are naturally reflected by the hierarchical structure
of the original as well as the extended concurrent video model — dependent
operation instances can be found “above” the given one within the tree. Hence,
already developed algorithm for subhistory extraction [11], which is almost as
simple as subtree selection, remains valid for the given proposal, providing an
efficient way for identifying consistent units of work.

After extraction of consistent units of work from users’ workspaces, another type
of commutativity — forward — is exploited for detecting conflicts between operations
coming from different users, serving as a basis for semantically correct merging of
the results of individual activities. Forward commutativity properties for the
methods of the data model presented in this paper are summarized below.

Operations | Edit(ID, R, VS) | Insert(VS, ID, POS) | Delete(ID, R) | Move(MID, R, ID, POS)
e id#ID v
Edit(id, r, vs) rAR=O
Insert(vs, id#1ID v id#1ID v
id, pos) pos R * pos # POS
. id#ID v id #ID v
Delete(id, r) rAR=O POS &7 * true
(mid # ID v (mid # ID v (mid % 1D v
. roRv (r.Low - 1 # POS A _ o
Move(mid, r, FAR=O) A - High £ POS)) 1 rNR=09) A {mid, id} N
id, po: p ' ' =
id, pos) (id#1ID v (id#1ID v ﬁi;’?; MID, ID} =@
pos £R *) pos # POS) po:

* Actually, it is also reasonable to treat these operations as conflicting
when pos + 1 € r in order to completely avoid commutativity in boundary cases

Table 1. Forward commutativity relations (symmetric).

Relations above demonstrate that editing operations of the expanded concurrent
video model provide visible concurrency benefits comparing to the original
proposal. It is now clear that users can freely work on the same segments until frame
regions they are manipulating do not overlap and what is more, video extracts
moved along the timeline can be simultaneously modified by other participants.



5. Conclusions and Further Work

In this paper, the concurrent video data model has been extended by means of the
development of intra-segment editing operations.

Such extension has enabled a higher level of concurrency among cooperating
users, at the same time providing more accurate support for modeling their activities
in collaborative video authoring environments. Additionally, major transactional
aspects of the original proposal [11] were preserved in a way to ensure efficient
information sharing and exchange.

Moreover, the results of this work are general enough to be applicable to stream
data in general. For instance, by renaming of frame sequences and video segments to
sample sequences and audio segments, the concurrent video model can be
transformed into concurrent audio, which may be found useful in the similar
authoring environments.

As a possible direction of further research, investigation of versioning support for
stream data on the basis of this work is considered.

Besides, development of a prototype system demonstrating feasibility of the
presented approach is regarded as an essential part of the future work.

For this purpose, there is an intention to utilize the recently developed Advanced
Authoring Format [7, 15] and its open source SDK. Basically, the AAF file format is
an industry-driven standard especially designed for interchange of compositional
meta-data between various multimedia authoring tools. At the moment of writing
this paper, several video editing applications have already claimed a certain level of
compliance with AAF. In particular, Adobe Premiere Pro [2] is able to export its
projects in this novel form.
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