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Abstract 
The document ranking problem is a well-known problem which appears for example 
in search engines. Once a search engine has identified a set of potentially relevant 
documents it faces the problem to determine which of them are more relevant and 
which are less, it means to range this documents by relevancy. This is typically done 
by assigning a numerical score to each document based on a ranking function, which 
incorporates features of the document, the query, and the overall document collection. 
Main issues of determining ranking function are high dimensionality of feature space 
and large amount of data. We present applications of several machine learning 
techniques (including median statistics, k-nearest neighbor, linear regression, neural 
networks) to obtaining ranking function from the training dataset, and then we 
estimate quality of this function using test set. We discuss advantages and 
disadvantages of each technique and compare them by efficiency and accuracy. Both 
learning and testing data sets are real-world data provided by Yandex assessors. 
 

INTRODUCTION 

Information Retrieval is a field of Computer Science that deals with the automated 
storage and retrieval of documents [10, 18]. Web search engines, tools designed to 
search for relevant information in internet, are very important users of Information 
Retrieval theory and algorithms. Search results are usually presented as a ranked 
(sorted) list, which is constructed using special ranking function. If the document is 
more appropriate to the particular query then it gets higher relevance value from the 
ranking function for this query and will be higher in the list. 
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Web search queries can have up to thousands or millions results, but users 
definitely will not look on all of them to find what they are interested in. Actually, 
most internet users do not read more than one page of search results. Therefore, it is 
much more important for the search engines to output relevant results within the few 
top positions, then to range pages correctly on positions on thousandth page. 

The contribution of this study is to compare variety of machine learning 
techniques for the problem of finding document ranking function with a good 
predictive accuracy. Formal problem description and detailed description of score 
function will be given in Section 2. We compare such techniques as average and 
median statistics (Section 4.1), k-nearest neighbor (Section 4.2), linear and quadratic 
regression (Section 4.3) and feed-forward neural networks (Section 4.4) providing 
their short description and experimental results with different learning parameters. 

 
DOCUMENT RANKING PROBLEM AND DATA DESCRIPTION 

The document ranking problem is to find a ranking function from learning set with 
known relevancies. Learning set usually contains feature values for query-document 
pairs and resulting relevance made by real assessors. This features can be any 
property of current query or current document or even both, like for example 
PageRank, tf*idf and query length, but this meta information is usually unknown to 
the algorithm. 

We use sets made by Yandex assessors which contain 245 features for each query-
document pair. All values of features are floats from 0 to 1 inclusive and relevancies 
are floats from 0 to 4 inclusive. Learning set has 9124 different queries and 97290 
pairs total.  

Scoring function 
The resulting ranking function can be excellent or worthless, or something in the 
middle. There are a lot of different ways to estimate its accuracy using a test set. Most 
of them use test set which have the same format as the learning set. We use the 
following scoring algorithm which is pretty common: 

1. We rank documents inside each query in test set using new ranking function. 
If some documents have the same resulting relevance, then documents with better real 
assessor’s relevance will be lower in rank. 

2. For each query we calculate Discounted Cumulative Gain (DCG) value by the 
following formula: 

 
 

                            (1) 

 
where reli is a relevance from real assessors for i-th document in the resulting 

ranked list.  
3. After all, we calculate the average value of DCGs for all queries in test set. 
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As much such average DCG is, as close the new ranking function results are to 
real assessor’s results. Using machine learning techniques we try to maximize this 
DCG value and get the best ranking function for given learning set. 

Test set that we use has 2026 queries and 21103 pairs total.  
 

RELATED WORK 

Formally the problem of finding ranking function can be considered as regression 
problem, classification problem or ordinal regression problem. The latter is a type of 
learning ranking (ordering) on instances and has properties of both classification and 
regression [15]. Several methods for this types of problems were investigated during 
past decade. They include perceptron [4], neural network with gradient descent [3], 
support vector machine [9], boosting algorithm [7], regression trees [11] and others. 

There are good fundamental works about machine learning techniques such as [2, 
14]. Detailed descriptions of most common approaches can be found there, but every 
technique has weak and strong sides depending on the problem. Therefore it is needed 
to have practical comparison of machine learning techniques for every particular 
problem or set of related problems. There are some papers with such comparison like 
[1] for phishing detection, [19] for IP traffic flow classification, [12] for spam e-mail 
categorization or [8] for link completion. 

 
MACHINE LEARNING TECHNIQUES FOR RANKING PROBLEM 

The current section is the main contribution of this paper, where we shortly describe 
used techniques and compare their results for particular document ranking problem. 
This techniques are average and median statistics (Section 4.1), k-nearest neighbor 
(Section 4.2), linear and quadratic regression (Section 4.3) and feed-forward neural 
networks (Section 4.4). 

Average and median statistics 
These two techniques are quite naive and simple. Main idea of the average method is 
that for every relevance value we calculate a characterizing vector as average among 
all feature-vectors with the same relevance. Then every query-document pair from the 
test set obtains relevance value equal to the relevance of closest characterizing vector 
from the learning set. 

With Euclidean metric results of proposed method is quite low (DCG ~ 3.6), but 
after we changed it to cosine metrics, where closeness of two vectors measures as 
cosine value between them, results became better (DCG ~ 3.8). 

Instead of taking average of feature-vectors, we can take median values for every 
feature and construct characterizing vector from them. With cosine metrics it gives 
even better results than previous two tries: DCG ~ 4.0, but even this is not acceptable 
as a good enough result. 
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K-nearest neighbour   
K-nearest neighbour algorithm belongs to instance-based learning methods family 
[14]. The main idea behind such methods is simple storing of all samples from 
learning set and then, when new sample from test set is met, examining its 
relationship with stored ones and making classification of new sample. Since 
generalizing beyond test set is postponed, such algorithms are often called “lazy”. In 
contrast to methods that create full representation of target function, only its local 
approximation is constructed each time for a new test sample. A big advantage here is 
that even if target function is very complex, it still may be quite well represented by 
combination of less complex functions. However, there are two general disadvantages 
as well. First, time of processing can be large, because almost all computations are 
done after new sample is met. And second, which is important especially for k-
nearest algorithm, is that usually all features are considered during process of 
retrieving ‘similar’ samples from the memory. If only few out of all features actually 
play role, then two very ‘similar‘ samples may be still very far away from each other. 
More details and theory about k-nearest neighbour algorithm can be found in [2, 14]. 

Basically there are three parameters which affect DCG and time of computation: 
number of nearest neighbours k, number of randomly chosen samples from training 
set n and number of features used. We have tried several combinations of these 
parameters (Table 1). 

 
* Intel Core2 CPU 1.86 GHz, 3 GB of RAM 

DCG k n Features Time* 
(hh:mm) 

3.820 1 97290 5 most frequently 
met 

03:24 

3.937 5 6000 245 04:16 
4.045 50 2000 245 01:20 
4.129 200 80000 245 60:15 

Table 1. K-nearest neighbour results. 
 
As you can see from the first two rows in Table 1, it is better to use larger number 

of features and smaller number of samples than vice-versa. Increasing number of 
neighbors also improves the result. However the problem of finding optimal 
parameters for k-nearest neighbor using exhaustive search through all promising 
combinations seems not possible because of the large computational time. Under 
experiments we also decreased weight function and achieved slightly improved DCG 
(about 3%), but we got bigger computational time as was expected.   

Therefore k-nearest method is not well appropriate for the document ranking 
problem because of many dimensions, large number of samples and hard tuning, but 
still it yields better result than median statistics. 
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Linear and quadratic regression  
Within linear regression approach we assume that target function can be represented 
as linear combination of instance attributes. The problem here is to find optimal 
values for adjustable parameters of model, weights, by minimizing error function E. 
This is done by iteratively moving to the direction of steepest descend of E with some 
learning speed η. More theory about regressions can be found in [2, 14]. 

Linear regression is quite simple and fast algorithm. Only after 100 steps with 
learning speed η=0.001 it gives DCG = 4.187. This 2-minutes result is significantly 
better than 60-hours result of k-nearest. Adding momentum does not improve this 
result much. 

We also tried extension of the linear regression algorithm, which use also 
quadratic term from Taylor series – a quadratic regression (polynomial with order 2). 
Number of weights in this case is much bigger – about 30000 versus 246 for linear 
regression, so computational time is much bigger (3 hours for 40 epochs), however 
obtained DCG is much better - 4.229. Further increasing of polynomial order seems 
impossible, because for cubic regression (order 3) number of weights will be about 
2.5 millions. 

For document ranking problem linear regression seems much more effective than 
k-nearest with big advantage as much smaller computational time. However best 
ranking function definitely is not so simple to be presented as linear combinations of 
features and therefore this method has strong limitations. Expanding to the quadratic 
regression improves result but algorithm is not fast anymore. 

Feed-forward neural networks 
Feed-forward neural networks (also known as Multilayer Perceptrons - MLP) are 
biologically inspired function approximation algorithms with successive applications 
[17] in numerous fields spanning from learning to recognize written character to 
driving a car. 

The basic MLP model consists of series of functional transformations [2]. For a 
network with H sigmoid units in first hidden layer, L sigmoid units in second hidden 
layer and single linear output unit it can be expressed as 

 
 

(2) 

 
Here w is set of network adjustable parameters (weights) and σ is sigmoid 

activation function: 
   

                                      (3) 
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MLPs are known as universal approximators – it has been proven [6] that three-
layer neural network as described above is capable to approximate any function with 
arbitrary accuracy given sufficient number of units in hidden layer. 

For training of such network one of possible choices is backpropagation algorithm 
[16]. It is based on gradient descent and tries to minimize sum squared error between 
network outputs and target values for these outputs. In contrast to linear regression, 
here error function can contain several local minima, and always there is a danger to 
fall into one of them instead of find optimal solution.  

To overcome strong limitations of the linear regression algorithm we tried 
multiperceptron approach. We suggest that due to its universal approximation 
property it would be capable to reproduce complex behavior of ranking function 
better than any linear and quadratic regression. 

At first we made a network architecture with one hidden sigmoid layer and single 
linear output unit (two-layer network). We tried various number of neurons in hidden 
layer nh. All networks were trained using backpropagation algorithm with learning 
speed η=0.01 during 30 epochs (corresponding running time varied from 5 minutes to 
45 minutes depending on nh). Initial weights were initialized with small random 
values. As in case of linear regression, adding momentum did not give significant 
improvement. Final root-mean-square (RMS) error for training set was calculated for 
each case and presented in Figure 1. 

 
 Figure 1. Dependence of DCG and final RMS error for training set on number 

of units in hidden layer for two-layer MLP 
 
As you can see in Figure 1, DCG increases and RMS error decreases quite fast 

with small nh. But after reaching nh=10 both DCG and RMS error remain almost 
constants. The reason of their small oscillations is different local minima caused by 
different values of initial weights. We tried to make an average of different results 
from networks with different initial weights, but it did not improve DCG. Best DCG 
value, 4.232 (nh=28), is slightly better than in case of quadratic regression.  

It is known that two-layer network is capable to approximate well only continuous 
functions [14], what is probably not true for document ranking function. Therefore we 
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have implemented three-layer network with two hidden layers containing nh1 and nh2 
sigmoid units. Again we used backpropagation algorithm with η=0.01. Number of 
epochs needed to achieve best DCG was determined empirically when DCG started to 
decrease. In Table 2 results are presented for different values of nh1 and nh2. 

 
DCG nh1 nh2 Epochs Final 

RMS 
error 

Time 
(hh:mm) 

4.234 40 40 350 0.1762 06:51 
4.235 50 30 200 0.1790 05:15 
4.235 60 60 150 0.1819 04:35 
4.235 200 50 200 0.1855 17:32 
4.237 150 150 300 0.1825 27:33 
4.239 10 10 1000 0.1792 04:34 
4.239 30 30 200 0.1814 02:59 
4.239 400 1 150 0.1839 26:58 
4.241 100 3 300 0.1768 12:18 
4.241 150 50 290 0.1819 20:38 
4.245 40 20 450 0.1761 16:12 
4.245 100 100 730 0.1742 42:20 
4.247 70 70 200 0.1793 07:12 
4.250 50 50 300 0.1797 07:31 

Table 2. Three-layer MLP results. 
 
As you can see, DCG is nonmonotonic function from nh1 and nh2. It is small for 

very small and very big nh1 and nh2 values and have maximum somewhere in 
between. The reason can be that small networks do not have enough adjustable 
parameters (weights) to capture all details of ranking function behavior while big 
networks due to big number of parameters simply ‘learn’ examples from learning set 
and therefore have poor generalization capability. The best DCG = 4.250 has been 
achieved in case of 50 units in both hidden layers after 300 epochs. 

Then we decreased η in 100 times to η = 10-4 and continued network learning. It 
gives even better DCG = 4.254 after 30 additional iterations. By decreasing η again in 
100 times to η = 10-6 we achieved DCG = 4.255, which is the best result over all our 
experiments.  

Besides these experiments we made classification among 79 classes (corresponds 
to 79 different probabilities met in the learning set) with MLP and also pairwise 
probabilistic cost function as described in [3]. The former approach did not give any 
good results and latter gives only DCG = 4.239.   

 
CONCLUSIONS AND FUTURE RESEARCH 

In this paper we compared machine learning algorithms with application for 
particular document ranking problem. We used average and median statistics, k-
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nearest neighbor, linear and quadratic regression and feed-forward neural networks 
with different numbers of units and layers.  

It was shown by experiments that three-layer neural network gives the best results 
over all techniques, but also require lots of tuning and few hours to compute. But 
even untuned neural network with random parameters can give fair results, slightly 
better than quadratic regression and much better than others approaches. 

In the future research we plan to consider other machine learning techniques 
closer, such as for example SVM, regression trees and other types of neural networks. 
Also we are going to mix resulting functions from different methods to construct 
more complex and relevant ranking function which can provide better results. 
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