

COMPARISON OF MACHINE LEARNING TECHNIQUES

FOR DOCUMENT RANKING PROBLEM

Mikhail Kalinkin1, Juliana Kiseleva2, Nikolay Vyahhi2, Bernhard Lang1

(1) OOO Siemens, Corporate Technology, Monitoring and Preventive Control,

(2) St. Petersburg State University
mkalinkin@yandex.ru

Abstract
The document ranking problem is a well-known problem which appears for example
in search engines. Once a search engine has identified a set of potentially relevant
documents it faces the problem to determine which of them are more relevant and
which are less, it means to range this documents by relevancy. This is typically done
by assigning a numerical score to each document based on a ranking function, which
incorporates features of the document, the query, and the overall document collection.
Main issues of determining ranking function are high dimensionality of feature space
and large amount of data. We present applications of several machine learning
techniques (including median statistics, k-nearest neighbor, linear regression, neural
networks) to obtaining ranking function from the training dataset, and then we
estimate quality of this function using test set. We discuss advantages and
disadvantages of each technique and compare them by efficiency and accuracy. Both
learning and testing data sets are real-world data provided by Yandex assessors.

INTRODUCTION

Information Retrieval is a field of Computer Science that deals with the automated
storage and retrieval of documents [10, 18]. Web search engines, tools designed to
search for relevant information in internet, are very important users of Information
Retrieval theory and algorithms. Search results are usually presented as a ranked
(sorted) list, which is constructed using special ranking function. If the document is
more appropriate to the particular query then it gets higher relevance value from the
ranking function for this query and will be higher in the list.

85

mailto:mkalinkin@yandex.ru

Web search queries can have up to thousands or millions results, but users
definitely will not look on all of them to find what they are interested in. Actually,
most internet users do not read more than one page of search results. Therefore, it is
much more important for the search engines to output relevant results within the few
top positions, then to range pages correctly on positions on thousandth page.

The contribution of this study is to compare variety of machine learning
techniques for the problem of finding document ranking function with a good
predictive accuracy. Formal problem description and detailed description of score
function will be given in Section 2. We compare such techniques as average and
median statistics (Section 4.1), k-nearest neighbor (Section 4.2), linear and quadratic
regression (Section 4.3) and feed-forward neural networks (Section 4.4) providing
their short description and experimental results with different learning parameters.

DOCUMENT RANKING PROBLEM AND DATA DESCRIPTION

The document ranking problem is to find a ranking function from learning set with
known relevancies. Learning set usually contains feature values for query-document
pairs and resulting relevance made by real assessors. This features can be any
property of current query or current document or even both, like for example
PageRank, tf*idf and query length, but this meta information is usually unknown to
the algorithm.

We use sets made by Yandex assessors which contain 245 features for each query-
document pair. All values of features are floats from 0 to 1 inclusive and relevancies
are floats from 0 to 4 inclusive. Learning set has 9124 different queries and 97290
pairs total.

Scoring function
The resulting ranking function can be excellent or worthless, or something in the
middle. There are a lot of different ways to estimate its accuracy using a test set. Most
of them use test set which have the same format as the learning set. We use the
following scoring algorithm which is pretty common:

1. We rank documents inside each query in test set using new ranking function.
If some documents have the same resulting relevance, then documents with better real
assessor’s relevance will be lower in rank.

2. For each query we calculate Discounted Cumulative Gain (DCG) value by the
following formula:

 (1)

where reli is a relevance from real assessors for i-th document in the resulting

ranked list.
3. After all, we calculate the average value of DCGs for all queries in test set.

86

As much such average DCG is, as close the new ranking function results are to
real assessor’s results. Using machine learning techniques we try to maximize this
DCG value and get the best ranking function for given learning set.

Test set that we use has 2026 queries and 21103 pairs total.

RELATED WORK

Formally the problem of finding ranking function can be considered as regression
problem, classification problem or ordinal regression problem. The latter is a type of
learning ranking (ordering) on instances and has properties of both classification and
regression [15]. Several methods for this types of problems were investigated during
past decade. They include perceptron [4], neural network with gradient descent [3],
support vector machine [9], boosting algorithm [7], regression trees [11] and others.

There are good fundamental works about machine learning techniques such as [2,
14]. Detailed descriptions of most common approaches can be found there, but every
technique has weak and strong sides depending on the problem. Therefore it is needed
to have practical comparison of machine learning techniques for every particular
problem or set of related problems. There are some papers with such comparison like
[1] for phishing detection, [19] for IP traffic flow classification, [12] for spam e-mail
categorization or [8] for link completion.

MACHINE LEARNING TECHNIQUES FOR RANKING PROBLEM

The current section is the main contribution of this paper, where we shortly describe
used techniques and compare their results for particular document ranking problem.
This techniques are average and median statistics (Section 4.1), k-nearest neighbor
(Section 4.2), linear and quadratic regression (Section 4.3) and feed-forward neural
networks (Section 4.4).

Average and median statistics
These two techniques are quite naive and simple. Main idea of the average method is
that for every relevance value we calculate a characterizing vector as average among
all feature-vectors with the same relevance. Then every query-document pair from the
test set obtains relevance value equal to the relevance of closest characterizing vector
from the learning set.

With Euclidean metric results of proposed method is quite low (DCG ~ 3.6), but
after we changed it to cosine metrics, where closeness of two vectors measures as
cosine value between them, results became better (DCG ~ 3.8).

Instead of taking average of feature-vectors, we can take median values for every
feature and construct characterizing vector from them. With cosine metrics it gives
even better results than previous two tries: DCG ~ 4.0, but even this is not acceptable
as a good enough result.

87

K-nearest neighbour
K-nearest neighbour algorithm belongs to instance-based learning methods family
[14]. The main idea behind such methods is simple storing of all samples from
learning set and then, when new sample from test set is met, examining its
relationship with stored ones and making classification of new sample. Since
generalizing beyond test set is postponed, such algorithms are often called “lazy”. In
contrast to methods that create full representation of target function, only its local
approximation is constructed each time for a new test sample. A big advantage here is
that even if target function is very complex, it still may be quite well represented by
combination of less complex functions. However, there are two general disadvantages
as well. First, time of processing can be large, because almost all computations are
done after new sample is met. And second, which is important especially for k-
nearest algorithm, is that usually all features are considered during process of
retrieving ‘similar’ samples from the memory. If only few out of all features actually
play role, then two very ‘similar‘ samples may be still very far away from each other.
More details and theory about k-nearest neighbour algorithm can be found in [2, 14].

Basically there are three parameters which affect DCG and time of computation:
number of nearest neighbours k, number of randomly chosen samples from training
set n and number of features used. We have tried several combinations of these
parameters (Table 1).

* Intel Core2 CPU 1.86 GHz, 3 GB of RAM

DCG k n Features Time*
(hh:mm)

3.820 1 97290 5 most frequently
met

03:24

3.937 5 6000 245 04:16
4.045 50 2000 245 01:20
4.129 200 80000 245 60:15

Table 1. K-nearest neighbour results.

As you can see from the first two rows in Table 1, it is better to use larger number

of features and smaller number of samples than vice-versa. Increasing number of
neighbors also improves the result. However the problem of finding optimal
parameters for k-nearest neighbor using exhaustive search through all promising
combinations seems not possible because of the large computational time. Under
experiments we also decreased weight function and achieved slightly improved DCG
(about 3%), but we got bigger computational time as was expected.

Therefore k-nearest method is not well appropriate for the document ranking
problem because of many dimensions, large number of samples and hard tuning, but
still it yields better result than median statistics.

88

Linear and quadratic regression
Within linear regression approach we assume that target function can be represented
as linear combination of instance attributes. The problem here is to find optimal
values for adjustable parameters of model, weights, by minimizing error function E.
This is done by iteratively moving to the direction of steepest descend of E with some
learning speed η. More theory about regressions can be found in [2, 14].

Linear regression is quite simple and fast algorithm. Only after 100 steps with
learning speed η=0.001 it gives DCG = 4.187. This 2-minutes result is significantly
better than 60-hours result of k-nearest. Adding momentum does not improve this
result much.

We also tried extension of the linear regression algorithm, which use also
quadratic term from Taylor series – a quadratic regression (polynomial with order 2).
Number of weights in this case is much bigger – about 30000 versus 246 for linear
regression, so computational time is much bigger (3 hours for 40 epochs), however
obtained DCG is much better - 4.229. Further increasing of polynomial order seems
impossible, because for cubic regression (order 3) number of weights will be about
2.5 millions.

For document ranking problem linear regression seems much more effective than
k-nearest with big advantage as much smaller computational time. However best
ranking function definitely is not so simple to be presented as linear combinations of
features and therefore this method has strong limitations. Expanding to the quadratic
regression improves result but algorithm is not fast anymore.

Feed-forward neural networks
Feed-forward neural networks (also known as Multilayer Perceptrons - MLP) are
biologically inspired function approximation algorithms with successive applications
[17] in numerous fields spanning from learning to recognize written character to
driving a car.

The basic MLP model consists of series of functional transformations [2]. For a
network with H sigmoid units in first hidden layer, L sigmoid units in second hidden
layer and single linear output unit it can be expressed as

(2)

Here w is set of network adjustable parameters (weights) and σ is sigmoid

activation function:

 (3)

89

MLPs are known as universal approximators – it has been proven [6] that three-
layer neural network as described above is capable to approximate any function with
arbitrary accuracy given sufficient number of units in hidden layer.

For training of such network one of possible choices is backpropagation algorithm
[16]. It is based on gradient descent and tries to minimize sum squared error between
network outputs and target values for these outputs. In contrast to linear regression,
here error function can contain several local minima, and always there is a danger to
fall into one of them instead of find optimal solution.

To overcome strong limitations of the linear regression algorithm we tried
multiperceptron approach. We suggest that due to its universal approximation
property it would be capable to reproduce complex behavior of ranking function
better than any linear and quadratic regression.

At first we made a network architecture with one hidden sigmoid layer and single
linear output unit (two-layer network). We tried various number of neurons in hidden
layer nh. All networks were trained using backpropagation algorithm with learning
speed η=0.01 during 30 epochs (corresponding running time varied from 5 minutes to
45 minutes depending on nh). Initial weights were initialized with small random
values. As in case of linear regression, adding momentum did not give significant
improvement. Final root-mean-square (RMS) error for training set was calculated for
each case and presented in Figure 1.

 Figure 1. Dependence of DCG and final RMS error for training set on number

of units in hidden layer for two-layer MLP

As you can see in Figure 1, DCG increases and RMS error decreases quite fast

with small nh. But after reaching nh=10 both DCG and RMS error remain almost
constants. The reason of their small oscillations is different local minima caused by
different values of initial weights. We tried to make an average of different results
from networks with different initial weights, but it did not improve DCG. Best DCG
value, 4.232 (nh=28), is slightly better than in case of quadratic regression.

It is known that two-layer network is capable to approximate well only continuous
functions [14], what is probably not true for document ranking function. Therefore we

90

have implemented three-layer network with two hidden layers containing nh1 and nh2
sigmoid units. Again we used backpropagation algorithm with η=0.01. Number of
epochs needed to achieve best DCG was determined empirically when DCG started to
decrease. In Table 2 results are presented for different values of nh1 and nh2.

DCG nh1 nh2 Epochs Final

RMS
error

Time
(hh:mm)

4.234 40 40 350 0.1762 06:51
4.235 50 30 200 0.1790 05:15
4.235 60 60 150 0.1819 04:35
4.235 200 50 200 0.1855 17:32
4.237 150 150 300 0.1825 27:33
4.239 10 10 1000 0.1792 04:34
4.239 30 30 200 0.1814 02:59
4.239 400 1 150 0.1839 26:58
4.241 100 3 300 0.1768 12:18
4.241 150 50 290 0.1819 20:38
4.245 40 20 450 0.1761 16:12
4.245 100 100 730 0.1742 42:20
4.247 70 70 200 0.1793 07:12
4.250 50 50 300 0.1797 07:31

Table 2. Three-layer MLP results.

As you can see, DCG is nonmonotonic function from nh1 and nh2. It is small for

very small and very big nh1 and nh2 values and have maximum somewhere in
between. The reason can be that small networks do not have enough adjustable
parameters (weights) to capture all details of ranking function behavior while big
networks due to big number of parameters simply ‘learn’ examples from learning set
and therefore have poor generalization capability. The best DCG = 4.250 has been
achieved in case of 50 units in both hidden layers after 300 epochs.

Then we decreased η in 100 times to η = 10-4 and continued network learning. It
gives even better DCG = 4.254 after 30 additional iterations. By decreasing η again in
100 times to η = 10-6 we achieved DCG = 4.255, which is the best result over all our
experiments.

Besides these experiments we made classification among 79 classes (corresponds
to 79 different probabilities met in the learning set) with MLP and also pairwise
probabilistic cost function as described in [3]. The former approach did not give any
good results and latter gives only DCG = 4.239.

CONCLUSIONS AND FUTURE RESEARCH

In this paper we compared machine learning algorithms with application for
particular document ranking problem. We used average and median statistics, k-

91

nearest neighbor, linear and quadratic regression and feed-forward neural networks
with different numbers of units and layers.

It was shown by experiments that three-layer neural network gives the best results
over all techniques, but also require lots of tuning and few hours to compute. But
even untuned neural network with random parameters can give fair results, slightly
better than quadratic regression and much better than others approaches.

In the future research we plan to consider other machine learning techniques
closer, such as for example SVM, regression trees and other types of neural networks.
Also we are going to mix resulting functions from different methods to construct
more complex and relevant ranking function which can provide better results.

REFERENCES

[1] Saeed Abu-Nimeh, Dario Nappa, Xinlei Wang, and Suku Nair. A Comparison of Machine
Learning Techniques for Phishing Detection. Proceedings of APWG eCrime Researchers Summit,
2007.

[2] Christopher M. Bishop (2006) Pattern recognition and Machine Learning, Springer
[3] Burges C.J. C., Shaked T., Renshaw E., Lazier A., Deeds M., Hamilton N., Hullender G. (2005).

Learning to rank using gradient descent. . ICML '05, vol. 119. p, 89-97. ACM.
[4] Crammer K., Singer, Y. (2002). Pranking with ranking. In Advances in neural information

processing A Neural Network Approach to Ordinal Regression systems (nips) 14, 641-647.
Cambridge, MA: MIT press.

[5] Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Machines and other
kernel-based learning methods. Cambridge University Press, 2000.

[6] Cyhenko, G. (1988). Continuous valued neural networks with two hidden layers are sufficient
(Technical Report). Department of Computer Science, Tufts University, Medford, MA.

[7] Freund Y., Iyer R., Schapire R., Singer Y. (2003). An efficient boosting algorithm for combining
preferences. Journal of Machine Learning Research, 4, 933-969.

[8] Anna Goldenberg, Jeremy Kubica, Paul Komarek, Andrew Moore, Jeff Schneider. A Comparison
of Statistical and Machine Learning Algorithms on the Task of Link Completion. KDD Workshop
on Link Analysis for Detecting Complex Behavior, 2003.

[9] Herbrich R., Graepel T., Obermayer K. (2000). Large margin rank boundaries for ordinal
regression. Advances in large margin classifiers, 115-132. Cambridge, MA: MIT Press.

[10] Jiawei Han and Micheline Kamber. Data Mining. 2005.
[11] Kramer S., Widmer G., Pfahringer, B., DeGroeve M. (2001). Prediction of ordinal classes using

regression trees. Fundamenta Informaticae, 47, 1-13.
[12] Chih-Chin Lai; Ming-Chi Tsai. An empirical performance comparison of machine learning

methods for spam e-mail categorization. Hybrid Intelligent Systems. Volume , Issue , 5-8 Dec.
2004, p. 44 – 48

[13] David Meyer, Friedrich Leisch, and Kurt Hornik. The support vector machine under test.
Neurocomputing 55(1-2): 169-186, 2003

[14] Tom M. Mitchell (1997), Machine Learning, McGraw Hill
[15] Shyamsundar Rajaram, Ashutosh Garg, Xiang Sean Zhou and Thomas S. Huang (2003). In

Machine learning: Ecml 2003, vol. 2837, 301-312, Springer-Verlag.
[16] Rumelhart D. E., McClelland J. L. (1986). Parallel distributed processing: exploration in the

microstructure of cognition (Vols. 1,2). Cambridge, MA: MIT Press.
[17] Rumelhart D., Widrow B., Lehr M. (1994). The basic ideas in neural networks. Communications

of the ACM, 37(3), 87-92.
[18] Soumen Chakrabarti. Mining the Web, 2007.
[19]Nigel Williams, Sebastian Zander, Grenville Armitage. ACM SIGCOMM Computer
Communication Review. Volume 36, Number 5, October 2006.

92

