
Variations of R-tree structure for indexing of spatial objects

M.G. Martynov
St.-Petersburg university

E-mail: ban@niimm.spb.su

Abstract

The data structures suitable for indexing of large spatial
objects in databases are considered. Some generalizations
of existing tree methods concerned approximation of spa-
tial objects and composite optimization criteria are pro-
posed. The efficient algorithms, including one for spatial
join operation, providing for optimize considered methods
are described. The results of experimental measurements
of different variations of R-trees and proposed methods
are presented and compared.

1 Introduction

The physical organization of database systems storing
complex spatial objects is considered. Common exam-
ples of such databases include geometric and geographical
databases, as well as of temporal database systems which
support more than one time dimension.

The most important requirements for these data struc-
tures are ability to provide fast access to large volumes
of data and preserve spatial relations such as nesting and
neighborhood for indexed objects. Several tree-like access
methods were proposed for spatial objects [4], including
different kinds of R-trees [5, 1, 3] and C-trees [2]. All
these tree-like structures use approximation of spatial ob-
jects with bounding objects: rectangles or arbitrary con-
vex polygons, respectively. The latter provides better pre-
cision of search, while the former is generally more effi-
cient during updates.

Methods investigated in this paper do not use clipping
technique which applied in R+-trees [5], because of bad
performance with uneven data.

The paper is organized as follows. In section 2 the
structure of spatial trees and existing R-tree variants are
described. New variations of R-tree structure and efficient
spatial join algorithm are considered in section 3. The re-
sults of performance comparison and experimental setup
are reported in section 4. Section 5 concludes the paper.

2 Spatial trees

An spatial tree is a B+-tree like structure which stores spa-
tial bounding objects without clipping them or transform-
ing them to higher dimensional points before.

A leaf nodes contain entries of the form(Oid, Sobj),
whereOid refers to a record in the database describing an
object of data, andSobj is enclosing spatial object of it.
A non-leaf nodes may contain such an entries and entries
of the form(Ref, Sobj), whereRef points to the child
node, andSobj is the minimum bounding object of all
entries in that child node. LetM andm be the maximum
and minimum number of entries that will fit in one node
correspondingly(1 < m ≤ M/2). A spatial tree satisfies
the following properties:

• The root has at least two children unless it is a leaf.

• Every non-leaf node has betweenm andM children
unless it is the root.

• All leaves appear on the same level.

• All non-leaf nodes have at least one entry of the form
(Ref, Sobj).

Unlike the B-tree structure an R-trees are non-
deterministic in allocating the entries onto the nodes, that
allows to optimize tree structure. However full optimiza-
tion is not possible, and actually heuristic optimization
method is usually applied, based on running large volumes
of experiments with high varying data.

The most important optimization criteria are minimum
of area covered by bounding objects of a nodes, minimum
overlap between objects of a node, minimum of margin
for bounding objects and maximum of storage utilization.
Analysis of these criteria in detail can be found in [1].
Besides them some values of shape and size of the objects
including their spatial relations may be considered.

An R-trees use approximation of spatial objects with
bounding rectangles with the sides of the rectangle par-
allel to the axes of the data space. Local optimization of

Advances in Databases and Information Systems, ADBIS’94. Moscow, May 1994.

the tree structure is applied during the insertion of a new
data rectangle which is subdivided into two steps. First is
in choosing insertion path and the second is in splitting of
overfilled nodes.

Original variant of R-tree proposed by Guttman in [3]
at the first step uses minimization of the area enlargement
for objects along insertion path. Greene’s algorithm pro-
posed later uses the same criterion. R∗-tree algorithm dif-
fers from described one in using overlap enlargement cri-
terion on the level preceding to the leaf level. It reduces
number of disk accesses but the CPU cost is too high.

Guttman discusses split-algorithms with exponential,
quadratic and linear cost with respect to the number of
entries of a node. All of them are designed to minimize
the area of the two rectangles resulting from the split. Sec-
ond algorithm gives good performance with not high CPU
cost. It divides a set ofM + 1 entries into two groups. At
first two most distant entries of a node are chosen which
will be the first entries of the groups, then another entries
are distributed in it on the area criterion.

Greene’s and R∗-tree split algorithms choose axis per-
pendicular to which the split is to be performed, then
sort entries along the chosen axis and divide entries onto
groups. Greene’s algorithm divides entries in two, and R∗-
tree does it better using overlap criterion for bounding ob-
jects of the groups. Besides R∗-tree uses forced reinsert to
archive tree structure during the insertion routine. It con-
sists in deleting and reinserting entries removed from the
center of a node. These method leads to more exact dis-
tribution of the entries and improves storage utilization.
Exact description and analysis of these algorithms contain
in [1].

3 The A-tree

3.1 Abstract spatial objects

R-tree methods described in section 3 can be modified for
use approximation with abstract object instead of rectan-
gles. It will allow to apply these methods with different
approximations without significant change. Implementa-
tion of the abstract object must include definition of type
of spatial object and the set of procedures to work with
them, which are common for all approximations. Spatial
object must be a convex bounded and closed set. Analy-
sis of the algorithms supporting tree operations allows to
select following set of procedures.

• Voiding of the object.

• Extending of the object with the point.

• Extending of the object with the other object.

• Restricting of the object with the other object.

• Getting the center of the object.

• The set of shape and size criteria of the object.

The set of criteria must include procedures that allow
getting area diameter and compactness of the objects. In
every implementation must be defined fixed number of an
axes on which lower and upper boundary of the objects
may be found. If an intersection is not closed for imple-
mented type of the spatial object then procedure for re-
stricting objects with other objects must be replaced with
procedure which gives geometric parameters of the set re-
sulting after intersection.

Polygons with the sides parallel to the defined axis were
implemented for comparison with rectangles correspond-
ing with the described scheme.

3.2 Composite optimization criteria

Algorithms are usually optimized by choosing suitable
criterion from the pre-defined set of it. For example R-tree
variants use criteria of area, margin, overlap and some-
times their combination e.g. in split of R∗-tree.

No single criterion can yield best possible performance,
and algorithms work with one value e.g. for searching in-
sertion path. Number of these values can be extended by
using functions of basis criteria. Thus infinite set of crite-
ria appears from which most appropriate can be found.

Set of functions must be restricted in order to be repre-
sented by the finite number of parameters. The most sim-
ple way is in searching for best linear combination of cri-
teria. This task is difficult because correlation between co-
efficients of linear combination and performance of con-
sidered methods is not known. Only certain smoothness
can be presumed in order to apply iteration method for im-
proving first plan, choosing direction of decreasing of the
aim function by chance. This method is heavy from com-
putational point of view, because every iteration includes
building–up and testing the tree.

3.3 Using of the main memory

Special algorithm storing upper levels of the tree in main
memory was implemented for caching of disk. It has ad-
vantages before resident cache programs, because allows
avoid needless page copying and uses dead space of the
nodes, applying floating pages technique.

3.4 Spatial join

Spatial join (SJ) is usually defined as a set of pairs inter-
sected objects from two sets of data.

In multi-dimensional case applying different lineariza-
tions [4] for SJ is not effective. The other way is to per-

218

form SJ with methods saving spatial relations. Tree struc-
tures are considered here satisfy this property.

The most simple way of using spatial trees for SJ con-
sists in decomposing SJ on the single queries, when first
set of data is organized in a tree and the second gives query
objects.

Joining of two trees is more effective. Three methods of
this type will be described here. First of them uses com-
bined searching for access paths in the trees. It is exten-
sion of the algorithm for searching path when intersection
query is performed. Three variants of this method were
considered which differ in choosing active tree in every
step. First variant takes only first tree, the second takes
tree with less current level and the third takes tree with the
maximum of area of the current object. Last of them is
better than others because it takes into account geometric
properties of the spatial objects.

The following algorithm is based on property of the
asymmetry of reading pages and yields best performance.
This property means that the order of reading pages dur-
ing SJ influences on less necessary number of pages to be
read.

Two ways of finding right reading order will be de-
scribed below with algorithm of SJ which uses them. Let’s
consider the first.

Let we have two sets of entriesE1 E2 which contain
ones from first and second trees respectively. LetE =
E1 ∪ E2 . SetP defined below will contain all pairs of
entries which can be add to resulting set of SJ.

P = {{e1, e2} : e1 ∈ E1, e2 ∈ E2, e1.o ∩ e2.o 6= ∅}
Let’s define onP relation of influencing between pairs.

Two pairsx,y will be namedclosely linkedif x ∩ y 6=
∅. Then the relation ofinfluencingwill be defined as
reflexive–transitive closure of theclosely linkingrelation.
It means that pairs connected with it influence each other,
so that reading of element from one pair can change last
information about order in which elements of other pairs
should be read. That information can be found from geo-
metric relations between objects of the pairs.

Relation of influencing divides P into independent
classes of equivalence which can be considered separately
in any order. The order of reading entries in one class must
be defined.

In order to be abstracted from real geometric parame-
ters of the objects functionFo(e1, e2) → [0, 1] have to be
introduced which for pair of entries{e1, e2} will be return
probability that after readinge2 reading ofe1 will be not
necessary.

Two solutions can be proposed for task of choosing
right reading order on the one class. First of them is based
on calculation probable number of pages to be read in the
class after reading one page from it.

Let’s introduce some designations to describe the
method. We are given one classCs, then forX ⊂ Cs fol-

lowing function can be definedFe(X) := {e : ∃x, e ∈
x ∈ X} , and fore ∈ Fe(X) we define the setM(e) :=
{x : x ∈ X, e ∈ x}.

Calculations are produced by recursive function
Fd(X, Q) , whereX ⊂ Cs, andQ ⊂ Fe(X) . The
set Q will contain entries have to be read after reading
other entries. The function will return minimum number
of reading pages in (X ,Q) and the page must be read first
for initial sets. CallFd(Cs, ∅) will give reading order for
Cs.

Definition Fd(X, Q).

FD1 If Q = ∅ then

Fd(X, Q) = min
e∈Fe(X)

{0, Fd(X, {e})} .

If X = Cs thene on which minimum is reached is
the first entry to be read.

FD2 If Q 6= ∅ thenFd(X, Q) = 1 +
∑

G⊂Em(L(e, G) ·
Fd(X\M(e), Q∪G\e)), for one entrye ∈ Q, where
Em := Fe(M(e))\e, andL(e, G) =

∏
x∈Em p(x),

where

p(x) :=
{

Fo(x, e) x /∈ G
1 − Fo(x, e) x ∈ G.

If Em = ∅ thenL(e, G) := 1.

The second method for choosing right reading order
gives less exact decision, but it’s implementation cost is
lower. It contains in choosing page which has maximum
of probability that the page will be read as a first page to
be read. For entrye this value is

1 −
∏

{e,x}∈Cs

Fo(e, x)

.
Algorithm SJ used one of the proposed methods will be

presented below.

Algorithm SJ.

SJ1 Place entries of the tree roots in setsA1, A2. Initial-
ize stack of classes (SC).

SJ2 Divide A1, A2 into classes and push them on stack.

SJ3 Pop from stack all classes which contain only data
entries and add their relevant pairs to the result set of
SJ.

SJ4 If stack is empty then end.

SJ5 Pop one class from stack and choose entry in it which
is not entry of data as described. Place the class in
A1, A2. Read node is pointed by choosing entry and
change it inA1, A2 on the entries of read node.Go to
SJ2.

219

Described algorithm is more effective then others be-
cause pages are read one time during one SJ and right
reading order is supported.

Two variants of functionF were considered.

1. Fo(e1, e2) := area(e1.o ∩ e2.o)/area(e1.o)

2. Fo(e1, e2) :=
∏

1≤i≤mg

area(e1.o[i]∩ e2.o)
area(e1.o[i])

wheree1.o[i] is edge number i andmg is a number of
edges. Besides in both variantsFo(e1, e2) := 0 if e2 is
data entry.

3.5 Addition to the split–algorithm

Experiments was done showed that optimal insertion al-
gorithm of R∗-tree when splitting extended nodes prefers
to choose large axis perpendicular to which split will be
performed. The following modification of the split algo-
rithm can be proposed which uses this fact. It will allow
not only decrease calculation cost of the split but also do
objects more compact.

SP1 Calculate extent of compactness of the node bound-
ing object. If it is less than pre-defined constant (cho-
sen with regard of parameters of using method) then
choose split axis along which bounding object has
largest extension else choose split axis by original
algorithm.

SP2 Perform distribution of the entries along chosen axis.

4 Experimental results.

Following experiments were carried out.

1. Performance comparison of different methods for
varying data and for different bounding object types
(BT).

2. Performance comparison for different algorithms of
SJ.

3. Testing dependence of choosing split axis for
Greene’s R-tree and R∗-tree.

For experiments 1 and 2 page size was fixed as 1 Kb
and memory cache as 300 Kb.M was set to maximum
concerning given page size and object type.m := 40%,
and number of deleting entries in algorithm of forced rein-
sert was set to 30% fromM , what corresponds to the best
values for considered algorithms.

Two classes of spatial objects were selected for testing:
standard rectangles and right polygons with sides parallel
to the fixed axes on the plain.

Four methods were tested.

1. (Simple) which uses area criterion for choosing in-
sertion path, and splitting in half perpendicular to
the axis along which bounding object of a node has
largest extent.

2. (qua.Gut).

3. (Greene).

4. (R∗-tree).

To compare the performance of the methods data sets of
5 types containing about 20000 objects each were gener-
ated. In order to compare different BT the single scheme
of generating objects of data was selected . New object
was formed by extension of the void object by pre-defined
number of points uniformly distributed in sphere with pre-
defined radius which center had pre-defined distribution.
Unit cube [0, 1)2 was taken as a working space. Ev-
ery type of the object generation was described by triplet
(Np, Rad, Cd), whereNp is number of points,Rad is a
sphere radius andCd is a distribution of the sphere cen-
ters. Np influences on extent of compactness of the ob-
jects andRad influences on mean value of its area. Used
data types are:

1. Uni.l : (3; 0.01; Uniform).

2. Uni.g : (6; 0.01; Uniform).

3. Uni.mix : (3; 0.01 in 79 from 80 cases and 0.05 in 1
from 80 cases; Uniform).

4. Gauss. : (3; 0.008; Gaussian).

5. Cluster : Centers of the data objects are uniformly
distributed in 1000 clusters. In each cluster centers
have Gaussian distribution with parameters (center of
the cluster, 0.01). Centers of the clusters uniformly
distributed.Np = 3, Rad = 0.008.

A tree was built with testing method for every type of
data and a queries of following three types were done.

1. Point query:Given a pointP find all data objectsO
with P ∈ O.

2. Intersection query:Given an object Q find all data
objects O withO ∩ Q 6= ∅.

3. Enclosure query:Given an object Q find all data ob-
jects O withQ ⊂ O.

400 point queries were performed with uniformly dis-
tributed query points and 400 queries for 2 and 3 query
types, which objects had following parameters (3;Rd;
Uniform), whereRd ∈ {0.1, 0.05, 0.02, 0.001} for 2
query type andRd ∈ {0.02, 0.001} for 3 query type.

220

For each generation of the objects mean value and nor-
malized variance of their area were measured. Building-
up the tree was estimated by three parameters: coefficient
of storage utilization and mean value of the disk accesses
with memory cache and without it. For queries two disk
access parameters were estimated as described and mean
number of the objects returned from queries was mea-
sured.

Comparing of the SJ algorithms was done under the fol-
lowing scheme. For each tree method for 3 first data types
the trees were built with following number of elements
(1000, 1000), (1000, 2000), (2000, 2000). For each pair
of the trees 5 SJ algorithms were done, incidentally disk
accesses and mean number of result pair for SJ was esti-
mated.

Testing properties of choosing split axis was carried
out for Greene’s split and split of R∗-tree. For this pur-
pose nodes with definite number of entries were gener-
ated many times, then it were splitted and coincidence of
the axes was determined.

Experiments show that:

• retrieval performance: Greene< Simple< Qua.Gut
< R∗-tree.

• CPU cost:
Simple< Greene< Qua.gut� R∗-tree.

• SJ algorithms: SJ1< SJ2< SJ3� SJ5< SJ4.

• spatial description type: rectangle< pentagon in the
point queries, in the enclosure queries with the small
query objects and in the intersection queries with
the large query objects, and rectangle> pentagon in
other queries.

High CPU cost of R∗-tree is only due to using overlap cri-
terion in choosing insertion path. This criterion does not
give considerable improvement of retrieval performance
and it will hardly be used in real systems. SJ algorithms
which use asymmetry of reading pages have total advan-
tage before others. In some operations using descrip-
tion with pentagons showed better performance, although
packing of polygons was not applied.

5 Conclusion

Abstract type of the bounding object and composite op-
timization criteria for building-up a tree have been pro-
posed. Efficient spatial join algorithm based on asymme-
try of reading pages have been presented. Performance
comparison for considered methods, including spatial join
have been done.

References

[1] N. Beekmann, H.-P. Kriegel, R. Schneider, and
B. Seeger. The R*-tree: an efficient and robust ac-
cess method for points and rectangles. InProc. ACM
SIGMOD Int. Conf. on Management of Data, pages
322–331, Atlantic City, NJ, 1990.

[2] O. Günter and H. Noltemeier. Spatial database indices
for large extended objects. InProc. 7th Int. Conf. on
Data Eng., pages 520–526, Cobe, Japan, 1991.

[3] A. Guttman. R-trees: a dynamic index structure for
spatial searching. InProc. ACM SIGMOD Int. Conf.
on Management of Data, pages 47–57, 1984.

[4] D. Lomet. A review of recent work on multi-attribute
access methods.ACM SIGMOD Record, 21(3):56–
63, 1992.

[5] T. Sellis, N. Roussopoulos, and C. Faloutsos. The R-
tree: a dynamic index for multi-dimensional objects.
In Proc. 13 conf. VLDB, pages 507–518, 1987.

221

