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Abstract

A comparison of several indexing techniques for complex object
in object-oriented database systems is presented, based on assump-
tion of non-uniform distribution of attribute values. The cost esti-
mations show that conventional ordered indices, especially nested
indices with object skeletons, can provide better performance than
signature files.

1 Introduction

During the last decade, the object-oriented database management
systems become common and proved their advantages and use-
fulness in several application areas, especially in relatively new
for databases. Early research prototypes were followed by sev-
eral commercial [8, 16, 4], as well as excellent public domain sys-
tems [5]. Many commercial relational systems are rapidly evolving
to incorporate important features of object-oriented systems, e.g.
powerful capabilities of data modelling and support for complex
data structures and integrity constrains.

However, while object-oriented systems are extremely efficient
in navigational type of data querying, their lack of ability to pro-
cess efficiently large amounts of data to evaluate complex queries
based on attribute values is also widely recognized (see, for exam-
ple, [12]). More specifically, pure object databases are not well
suited to support powerful high-level query languages inherent to
relational and post-relational systems. Actually, to introduce any
querying facility it is necessary to relax one of the major principles
of the object paradigm, namely encapsulation (which is normally
done practically in all current systems.

The indexing techniques developed to support queries in rela-
tional systems are usually not applicable in the object environment
due to

• complex structure of the objects implies that indices should
be suitable to support relatively long pointer traversing

• values may be computed with methods, rather than stored
as attributes, which significantly increases the frequency and
the cost of index updates
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• the presence of set-valued attributes makes set comparison
operations more frequent.

Several data structures were proposed to support the value-
based querying in the object-oriented databases, including join in-
dices [20], access support relations [12], nested indices [2], and sig-
nature files [10]. Many of these structures were introduced for com-
pletely different environments and their relevance and efficiency for
support of object querying is not obvious.

Therefore, it is important to evaluate the behavior of different
indexing structures in the object-oriented database systems. An
analytical model of this kind was described and used in [11]. How-
ever, this model used an incorrect estimation of the expected query
selectivity. Estimations in [17] show that, under assumptions of
this model, access support relations and nested indices outperform
signature files in almost any circumstances.

The estimations of the relative efficiency of different indexing
techniques are very important for query optimization: unlike rela-
tional systems, the evaluation of the attribute values in the object-
oriented database may have significant cost, and therefore should
be carefully counted as important for estimation of the query exe-
cution plan costs.

However, the same estimations in [17] show that the probability
to obtain non-empty result of a query is extremely low, in assump-
tion of uniform distribution of the attribute values (same assump-
tion is used in other papers, including [11]). Obviously, this is not
the case in the real-world systems: normally queries return mean-
ingful non-empty results.

The purpose of the on-going research described here is to study
the applicability of different indexing techniques proposed for ob-
ject bases under various assumptions on static and dynamic charac-
teristics of the database. In this paper an attempt to define a more
realistic model for queries to the object base with set-valued at-
tributes. To make the things trackable, these estimations are based
on a simplified object model.

The cost model of [11, 17] is enhanced to use this distribu-
tion instead of uniform, is defined. Finally, different indexing tech-
niques are evaluated using this enhanced model.

The results of both [11] and [17] show that the assumption that
attribute values are uniformly distributed is completely unrealistic,
because it implies that probability to get non-empty query results is
very close to zero.

The rest of the paper is structured as follows. Next section 2
describes the object model and query types, section 3 defines dif-
ferent index structures for complex objects. In section 4 the cost
model, retrieval algorithms are presented and discussed. The sec-
tion 5 contains results of comparison and conclusions.
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2 The Object and Query Model

In an object-oriented database scheme, real-world entities are rep-
resented by only one modelling concept: the object.

Several different object models were proposed during past
years. These models highlight various aspects of data modelling
and refine the object-oriented paradigm from semantical point of
view, resulting in latest standardization activities [18, 6].

However, most of differences between these models are irrele-
vant to the purposes of this research, which is based on generalized
complex object model similar to the models described in [12] and
in [20]. Similar models are also used in [14, 9].

Actually all these models completely ignore the behavioral as-
pect of object-oriented paradigm, and are equally suitable for anal-
ysis of systems using the concepts of nested relations [19, 7].

The most interesting aspects of this model concerning indexing
to support set operations are:

object identity each object instance has as identity that is invariant
throughout its lifetime and is invisible to user.

type constructors, i.e. tuple and set constructors, are used to re-
cursively build complex object types.

object referencesare stored unidirectional, conforming to almost
all published object models.

Complex objects are defined as follows:

1. Integers, strings, BLOBs etc. are considered asscalar ob-
jects.

2. If O1, O2, . . .On are objects anda1, a2, . . .an are attribute
names, then

[a1 : O1, a2 : O2 . . . an : On]

is an object calledtuple object.

3. If O1, O2, . . .On are objects, then

{O1, O2 . . . On}

is an object that is calledset object.

It is assumed that any object may be included into several sets,
and that sets are represented via object references based on object
identity.

In many cases it is necessary to assume that objects in any set
are of sametype. However, we try to avoid this assumption where
possible, to allow sets of heterogeneous objects to be represented
in this model.

Some of the indexing techniques discussed below can support
more specific features of the object-oriented paradigm, e.g. inheri-
tance (class–subclass relationship), which is commonly considered
as orthogonal to the complex object structure.

To take into account the inheritance, it is also necessary to de-
fine in more details the storage model used for representation of
objects (rather than index structures only). There are two major
approaches to store objects in the presence of inheritance:

• all attributes of the object may be stored together

• inherited attributes are stored separately within the object
representation in the class from which they are inherited
(sometimes this representation is calleddistributed storage
model[21]).

The storage models described above imply different clustering
and have therefore different performance characteristics, as dis-
cussed in [9].

As an example, the following database scheme will be consid-
ered:

disk:[serial-no: string,
publisher: string,
location: string
contents: {items}]

item:[place_where_recorded : string,
comp: composition,
played_by: {interpreter}]

composition:[ name: string,
author: person,
parts: {part}]

interpreter:[interp: person,
function: string,
instrument: string]

person:[name: string,
. . . ]

The queries to this database will normally return locations of
disks containing records with desired properties. Nowadays a com-
plete implementation of this system should select required disk in
the juke box and play it, using multimedia facilities. However, this
aspects of implementation are beyond the scope of this paper.

It is important to note that set comparisons may be necessary
for certain queries even if sophisticated algebraic operations are not
included in the query language. For example, simple set-inclusion
queries are very common in the complex object environment, as
described in [11].

In the example database defined above, we may query for disks
containing recordings by certain interpreters, i.e. select all disks
with records for which the set of interpreters contains the specified
set (superset query).

A search for disk with only specified interpreters provides an
example ofsubset query.

3 Index Structures

In this section several indexing structures that were proposed to
support the structure of complex objects are briefly described.

3.1 Signature Indices

The signature indices, sometimes called superimposed coding,
were introduced and analyzed in [10] to support indexing for text
retrieval. For description of the scheme, it is assumed that objects
to be indexed are identified bysets of index terms(words in the
initial application domain), and queries are represented as sets of
terms as well. For each term, asignatureis constructed as a row of
bits (of same lengthF for all terms). In addition, a number of ”1”’s
is equal tom (same value for all terms).

To construct term signature, one can use a procedure based on
hash functions. e.g. use the values of a series of hash functions
as bit position numbers, until specified numberm of different bit
positions is reached.

To form the signature for a set or a query, all signatures of the
terms included into this set (or query) are OR’ed into one bit row
of same lengthF . The use of signature for filtering is based on the
fact that

S1 ⊆ S2 → sig(S1) ≤ sig(S2) (bitwise).

For example, if evaluation of a queryQ requires to find all ob-
jects that include all terms of query (i.e.Q ⊆ S, only objects
satisfying sig(Q) ≤ sig(S) need to be considered).
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An important undesirable property of signatures is possibility
false drops, which may significantly affect the effectiveness of the
technique. The probability of false drop is reduced when F in-
creases. Unfortunately, the size of index and time necessary to scan
it are also increased in this case.

The signatures of individual objects may be arranged in sev-
eral ways. In most cases, the best search results may be obtained
with bit-sliced multiple block-signature scheme [13]. However,
multiple-block superimposed coding performs very poorly on any
database updates: actually, it is necessary to re-built the index for
each update. Therefore, the deferred update technique may be used
to amortize the cost of updates.

Recently the possibility to use signature files as indices for
object-oriented databases were studied in [11], based on ordinary
and bit-sliced signature files. The index consists of signatures of
all sets contained in the objects, accompanied with corresponding
OIDs. The performance characteristics for this structure are differ-
ent from that for text retrieval systems, as shown in [17].

3.2 Nested Indices

The indexing techniques to support search queries on nested com-
plex objects were proposed in [2]. This kind of indices is based
on traditional one-dimensional access method, such as B-tree. An
index entry consists of a nested attribute value (obtained via certain
path), used as a key, and a set of OIDs of all objects that refer to (or
contain) this value through specified path.

The performance of this data structure was proposed and stud-
ied in [2] for navigational operations in object-oriented databases.
In [11], the indices for nested objects are compared with ordinary
and bit-sliced signature indices.

The structure of nested indices has known weaknesses, namely,
high update cost [21] and lack of support for class hierarchy. There-
fore, few enhancements were proposed. In [3, 1] the structure of
nested attribute index is augmented with OID index that provides
fast access to the list of parents for any object listed in the attribute
index.

A further enhancement of the nested index structure is proposed
in [15]. This structure, calledobject-skeletonapproach, consists of
the following components:

• an index on attribute values

• a network of OIDs, representing the complex object structure

• the database containing descriptive information (i.e. object
representations with attribute values included).

The advantage of this structure is that navigational network
consist of very small records that may be clustered to support fast
path traversing, both in complex object structure and class hierar-
chy, while the attribute values may be clustered on per-object basis.
Additional advantage of the object skeletons is that this structure
can be used instead of address table, providing a combination of
fast physical OID (pointing to skeleton) with flexible storage man-
agement for the rest of object data.

3.3 Access Path Relations

The access path relations are described in [12]. This structure is
intended to support both navigation and retrieval in object-oriented
databases and is defined as follows.

Let O0, O1, O2, . . . , On be the database objects. The expres-
sion O0.A1.A2 . . . An is a path iff for all 1 < i < n one of the
following holds:

• ObjectOi−1 is [. . . , Ai : Oi, . . .], i.e. the tuple constructor
containing attributeAi.

• ObjectOi−1 is [. . . , Ai : {. . .}, . . .], i.e. the tuple construc-
tor containing set-valued attributeAi.

The latter case is of primary interest for the purposes of this
paper.

Given a homogeneous set of paths, an access path relation can
be constructed as follows: the tuple of this relation contains at-
tribute values for non-set attributes in the path and object identifiers
for set-valued attributes in the path.

Access paths may contain significant amounts of redundant
data. As it is shown in [12], access path relations can be decom-
posed into set of binary and ternary (for set-valued attributes) re-
lations. To reconstruct full paths, relational natural join operation
can be applied to decomposed relations.

However, full normalization of access path relation will result
in large number of join operations necessary to process it, eliminat-
ing any advantage of the structure as access accelerator.

If other (outer, left-outer, or right-outer) natural joins are ap-
plied to decomposed relations, the result will contain partial or in-
complete paths as well.

The primary purpose of decomposition, is, however, to provide
sharing of path segments between different access path relations.

The access relations seem to be very promising not only for
navigation operations support, but for set operations as well, be-
cause the full power of relational operations can be used for this
purpose.

Similar structures were discussed, among others, in the paper
on implementation of complex objects [20].

4 The Cost Model

The cost model used here is basically the same as in [17], but with
relaxed assumption of uniformity of distribution of the attribute val-
ues. Instead, empirical data on value distribution were used for sim-
ulation of the indexing behavior. It is assumed that a kind “20-80”
rule is applicable in these environment, i.e. the small percentage
of the values of the attributes that are most frequent in the database
are also frequently used in the queries (user actually knows what is
stored in the database).

The typical results of experimental measurements of the value
frequencies are shown graphically on the fig. 1.
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Figure 1: Value frequencies

Another possibility is high correlation of different attribute val-
ues included into the same set-valued attribute, i.e. assumption that
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normally there is a significant skew of attribute values. However,
this possibility is ignored in this research: it is assumed that differ-
ent values of the members of a set attribute are independent (cer-
tainly not always true for example database of this paper).

It is assumed that, for each valuev ∈ V the relative frequency
fv (number of occurrences ofv divided by total number of occur-
rences for allv ∈ V ) and selectivitysv (defined as a percentage of
objects that contain this value, through the chain of nesting).

The generalization of the cost model defined in [11] and [12] is
used to compare different indexing techniques.

Other parameters of the model are basically same as defined
in [17] and are listed in table 1.

Symbol Definition
N Total number of objects
P size of disk page
lo size of an OID
V cardinality of the set domain
On number of OIDs per page
SOID size of OID file in pages
T number of page accesses per object

Table 1: Model parameters

To obtain a cost measure, we assume that the query evaluation
is performed in the following steps:

1. The initial set of object identifiers (OIDs)S0Q is calculated
using the index. This set contains all OIDs relevant to query
Q, and possibly some additional OIDs, due to imprecision of
either index or algorithm used to buildS0Q.

2. The OIDs of objects not relevant to the query are filtered out
of the setS0, using either index or direct access to objects.

3. The relevant objects are retrieved and returned to the query-
ing application.

Therefore, the cost of the query may be expressed as follows:

total cost = index cost + filter cost + retrieval cost.

For many cases, some of these costs may be equal to 0. for exam-
ple, in many cases the only way of filtering is retrieval of objects,
and in this case the retrieval cost is already included into cost of
filtering. For some algorithms, the setS0 may be precise, and,
therefore, the cost of filtering will be 0.

However, even in the cases when the index structure provides
sufficient information to obtain preciseS0, it may be reasonable to
generate only approximateS0 and then use filtering process, be-
cause for small sizes of the set filtering may be less expensive than
index search, even if access to the stored objects is required.

In this research we are primarily interested in set inclusion
queries. The expected number of objects relevant to the queryQ
may be calculated as

EQ = N ∗
∏
v∈Q

sv

and decreases very quickly when the cardinality of the query setq
increases.

Since the cost of all access methods in question depends highly
on I/O cost, the estimation of cost will be actually estimation of the
quantity of disk page accesses.

We assume that direct access to the object via OID requires at
most 1 disk access. This is definitely true for physical (location-
based) OIDs, and is a reasonable assumption for logical (location-
independent) OIDs, if the perfect hashing scheme is used for the

object placement. Therfore, the cost of retrieval of objects relevant
to query is proportional to the number of the objects, provided that
this number is small relative to the total number of the objects in the
database. In most cases below, this applies also to the cost of filter-
ing phase, because filtering is performed via the object retrieval.

4.1 Signature Files

The behavior of signature indices created over the object database
differs significantly from that for full-text databases due to the dif-
ferences in quantitative parameters of databases and queries. In the
textual databases, the signature for a document is composed from
signatures of several terms in the text, while the cardinality of set-
valued attributes is relatively small in our study.

The major limitation of the signature indices in the text retrieval
applications is high probability offalse drops, that is, imprecision
of indexing. The probability of false drops in object bases is esti-
mated in [17] and are reproduced on the fig. 2.

Figure 2: The false drop probabilities

Due to small number of relevant objects, the unconditional
probability of false drops is negligible even for short signatures.
On the other hand, the cost of index search is relatively high, be-
cause, regardless of the query set size, the whole signature index
should be scanned to obtain the setS0.

This cost may be significantly reduced when the signature file
is represented as a set of bit-slices, because only bit-slices corre-
sponding to 1-bits in query signature should be scanned. Further,
due to small expected number of relevant objects, it is possible to
process only few first bit-slice files to obtain sufficiently small set
S0 (possibly with large relative amount of false drops to be filtered
out).

The total cost of query evaluation can be estimated as

Cslice ∗ m + Cobj =
⌈

N

Pb

⌉
∗ m + TA + TFm(N − A)

whereFm is the false drop probability form-bit signatures.
The dependency of the total cost from the number of processed

bit slicesm is shown on fig. 3.
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Figure 3: Bit-slice signature costs

The optimal number of bit slices to be processed depends on
the database characteristics, but, as shown in [11], normally lies
in the range of 2–5 and may be estimated statically provided that
database statistics is available.

4.2 Ordered Indices

The essential part of all indexing schemes (except signature files)
compared in this study is an ordered index with attribute values as
keys. For all structures, this index can provide all data necessary
for precise calculation of the set of relevant OIDs, thus eliminating
the filtering phase of query evaluation.

However, the cost of index search is approximately proportional
to the cardinality of query set and grows linearly when this cardi-
nality increases. At the same time, the cardinality of resulting set
decreases exponentially, therefore, it is reasonable to restrict index
search to a subset of query set.

The index search may start from the least frequent value from
the query set, then the resultingS0 can be further restricted using
next least frequent value, while the cost of filtering the setS0 is
greater than the cost of index search for remaining values in the
query set. Unfortunately, the cost of obtaining the frequencies for
particular values in the query set is comparable with that of index
search, therefore, the algorithm described above cannot be practi-
cally implemented.

Therefore, we assume that the first and subsequent values are
selected randomly from the query set. The expected selectivity can
be estimated as ∑

v∈Q

sv ∗ pv

and the expected size of the set of OIDs still decreases rapidly when
the cardinality ofQ grows.

Obviously, the performance of this scheme may be improved,
if the frequencies of a small number of most frequent values are
stored in the main memory.

4.2.1 Nested Indices

The discussion above directly applies to the structure of nested in-
dices. In the following comparison we assume that the number of

attribute values to be searched in the index is determined statically
during the query optimization phase based on database statistics.

The cost of ordered (tree) index search can be expressed as
mc dlogb(N)e , whereb is the average number of index entries per
block and c is the number of different object classes in the inheri-
tance hierarchy.

The filtering phase requires costly navigation through complex
object hierarchy: each move along the pointer requires a disk ac-
cess.

4.2.2 Nested Inherited Indices

The structure of nested inherited index differs from (ordinary)
nested index only if indexed objects may belong to several differ-
ent classes in the class hierarchy. In this case, the advantage of the
inherited nested index is that the cost of the index search phase
is divided by the number of classes in the hierarchy. However,
additional cost is necessary to access the secondary (OID) index,
instead of searching in several indices in previous case.

The cost of filtering is the same, because there is no difference
in the structure.

4.2.3 Object Skeletons

The structure of object skeletons provides fast possibility to navi-
gate through both complex object structure and inheritance hierar-
chy. Typically, all data describing complex object will fit into single
page. Therefore, the cost of filtering phase is less than that for both
types of nested indices. Therefore, the estimations for the search
cost arem dlogb(N)e , and 2S disk accesses for filtering phase,
because one access is necessary to obtain the object skeleton and
another to check the attribute value.

4.2.4 Access Path Relations

The structure of access paths belongs to ”higher level” than other
considered in this study, and performance may depend significantly
on actual implementation.

It is assumed that access path relation is represented as a pair
of ordered indices (with first and last attributes of the relation a s
the keys. Therefore, any search for particular attribute value re-
quires logarithmic number of disk accesses (depending on the size
of access relation).

The major advantage of the access path relations is that filtering
can be performed using the relations without retrieving the complex
objects in the database.

5 Comparison and Conclusions

To obtain the empirical data on the value distribution, a medium-
size bibliographic database was used. The abstracts of papers
stored in this database were considered as set-valued attributes (i.e.
abstracts were treated as sets of words. The obtained frequencies
are used as probabilities in a simple analytical model similar to de-
scribed in [17], as well as for simulation experiment with randomly
generated queries (taking into account the same frequencies).

The results of total cost estimation for different indexing tech-
niques are represented on fig. 4.

The results of both modelling and simulation clearly show that
in most cases in the realistic parameter ranges the conventional in-
dexing techniques based on inverted lists (nested indices, access
path relations and similar) provide very good scalability and usu-
ally slightly outperform signature files of different type, with few
exceptions. The advanced variants of nested indices clearly outper-
form initial structure.
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Figure 4: Query costs

The model presented in this paper is built in assumption of
“cold” query execution, that is, it is assumed that all data neces-
sary for query processing are read from disk. With rapid growth
of memory sizes this assumption also becomes unrealistic and may
result in significant performance implications. Even if assumption
that the whole database can fit into main memory is still unrealistic,
some important parts of database, for example, object skeletons or
signature lists are usually small enough to be kept in memory.

Another issue missed here is update costs, which are especially
important for creation of indices on method values.
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